Seminar on Set Theory

Solutions to exercise 2

September 25, 2015

1 Boolean Algebras and Propositional Logic (6 points total)

Let \mathcal{L} be the classical propositional language consisting of $\bot, \top, \neg, \rightarrow, \lor, \land, \leftrightarrow$ and propositional variables P_x for each $x \in B$. Let the theory T have the following sentences for all $x, y \in B$:

$$P_x \wedge P_y \leftrightarrow P_{x \wedge y},\tag{1}$$

$$P_{x^*} \leftrightarrow \neg P_x,\tag{2}$$

$$\neg(P_x \to P_y) \quad \text{if } x \not\leq y.$$
 (3)

(Students get 1,5 points for defining a good theory)

Define a map $f: B \to B(T)$ by $x \mapsto [P_x]$ for all $x \in B$. We will show that f is a bijective algebra homomorphism.

If $x, y \in B$, then

$$f(x \wedge y) = [P_{x \wedge y}]$$

= $[P_x \wedge P_y]$ (by (1))
= $[P_x] \wedge [P_y]$ (by construction of $B(T)$)
= $f(x) \wedge f(y)$.

Furthermore,

$$f(x^*) = [P_{x^*}]$$

= $[\neg P_x]$ (by (2))
= $[P_x \rightarrow \bot]$
= $[P_x] \rightarrow [\bot]$ (by construction of $B(T)$)
= $[P_x]^*$
= $f(x)^*$.

Proposition 1.1 now tells us that f is an algebra homomorphism. (Students get 1 point for showing this)

To show that f is injective, suppose we have $x, y \in B$ with $x \neq y$. We may assume that $x \not\leq y$. By (3), we must have that $T \vdash \neg (P_x \rightarrow P_y)$, so

 $T \not\vdash P_x \to P_y$. Hence, by construction of B(T), we have $f(x) = [P_x] \neq [P_y] = f(y)$. (Students get 2 point for showing injectivity)

We prove that f is surjective by induction on the complexity of formulas of B(T). Clearly, for every propositional variable P_x of \mathcal{L} , there is an $x \in$ B such that $f(x) = [P_x]$. Furthermore, $f(0) = [\bot]$ and $f(1) = [\top]$ (by Proposition 1.1). Assume that there are $x, y \in B$ such that $f(x) = [\phi]$ and $f(y) = [\psi]$, then clearly:

$$\begin{split} f(x^*) &= [\phi]^* = [\neg \phi], \\ f(x \wedge y) &= [\phi] \wedge [\psi] = [\phi \wedge \psi], \\ f(x \vee y) &= [\phi] \vee [\psi] = [\phi \vee \psi], \\ f(x \Rightarrow y) &= [\phi] \Rightarrow [\psi] = [\phi \rightarrow \psi], \\ f((x \Rightarrow y) \wedge (y \Rightarrow x)) &= [\phi \leftrightarrow \psi] \quad \text{(by the equalities above).} \end{split}$$

(Students get 2 points for showing surjectivity) We conclude that f is a bijective algebra homomorphism, so B and B(T) are isomorphic.

2 Cantor's Theorem (4 points total)

a) Suppose Cantor's Theorem is not true. Then there is a set X and a bijection $f: X \to \mathcal{P}(X)$ (It is trivial to show that the power set of a set is not of lower cardinality than that set). Clearly X is nonempty because \emptyset and $\{\emptyset\}$ have different finite cardinality. Define the subset $X_0 \subseteq X$ by:

$$X_0 = \{ x \in X : x \notin f(x) \}.$$

By Zermelo's third Axiom of separation this indeed is a set. And it is a subset of X, so $X_0 \in \mathcal{P}(X)$. Since f is a bijection, there must be a $x \in X$ such that $X_0 = f(x)$. Like in Zermelo's proof we again consider the two possible cases:

 $x \in X_0$: Then, by definition of $X_0, x \notin f(x) = X_0$ which is a contradiction.

 $x \in X \setminus X_0$: Then x is an element of X, not in f(x). So $x \in X_0$ which again is a contradiction.

Thus, we get a contradiction and conclude that there is no such bijection. Thereby proving the theorem. (Students get 3 points for Proving the theorem)

b) Suppose such a set U does exist. Then by the powerset axiom $\mathcal{P}(U)$ is also a set and all its elements are contained in U. So $|\mathcal{P}(U)| \leq |U|$ which is in contradiction with Cantor's theorem. (Students get 1 point for showing this)