Seminar on Set Theory

Solutions to exercise 2
September 25, 2015

1 Boolean Algebras and Propositional Logic (6 points total)

Let \mathcal{L} be the classical propositional language consisting of $\perp, \top, \neg, \rightarrow, \vee, \wedge, \leftrightarrow$ and propositional variables P_{x} for each $x \in B$. Let the theory T have the following sentences for all $x, y \in B$:

$$
\begin{align*}
& P_{x} \wedge P_{y} \leftrightarrow P_{x \wedge y}, \tag{1}\\
& P_{x^{*}} \leftrightarrow \neg P_{x}, \tag{2}\\
& \neg\left(P_{x} \rightarrow P_{y}\right) \quad \text { if } x \not 又 y . \tag{3}
\end{align*}
$$

(Students get 1,5 points for defining a good theory)
Define a map $f: B \rightarrow B(T)$ by $x \mapsto\left[P_{x}\right]$ for all $x \in B$. We will show that f is a bijective algebra homomorphism.

If $x, y \in B$, then

$$
\begin{array}{rlr}
f(x \wedge y) & =\left[P_{x \wedge y}\right] & \\
& =\left[P_{x} \wedge P_{y}\right] & \quad(\text { by }(1)) \\
& =\left[P_{x}\right] \wedge\left[P_{y}\right] \quad(\text { by construction of } B(T)) \\
& =f(x) \wedge f(y) .
\end{array}
$$

Furthermore,

$$
\begin{aligned}
f\left(x^{*}\right) & =\left[P_{x^{*}}\right] \\
& =\left[\neg P_{x}\right] \quad(\text { by }(2)) \\
& =\left[P_{x} \rightarrow \perp\right] \\
& =\left[P_{x}\right] \rightarrow[\perp] \quad(\text { by construction of } B(T)) \\
& =\left[P_{x}\right]^{*} \\
& =f(x)^{*} .
\end{aligned}
$$

Proposition 1.1 now tells us that f is an algebra homomorphism. (Students get 1 point for showing this)

To show that f is injective, suppose we have $x, y \in B$ with $x \neq y$. We may assume that $x \not \leq y$. By (3), we must have that $T \vdash \neg\left(P_{x} \rightarrow P_{y}\right)$, so
$T \nvdash P_{x} \rightarrow P_{y}$. Hence, by construction of $B(T)$, we have $f(x)=\left[P_{x}\right] \neq$ $\left[P_{y}\right]=f(y)$. (Students get 2 point for showing injectivity)

We prove that f is surjective by induction on the complexity of formulas of $B(T)$. Clearly, for every propositional variable P_{x} of \mathcal{L}, there is an $x \in$ B such that $f(x)=\left[P_{x}\right]$. Furthermore, $f(0)=[\perp]$ and $f(1)=[\top]$ (by Proposition 1.1). Assume that there are $x, y \in B$ such that $f(x)=[\phi]$ and $f(y)=[\psi]$, then clearly:

$$
\begin{aligned}
& f\left(x^{*}\right)=[\phi]^{*}=[\neg \phi], \\
& f(x \wedge y)=[\phi] \wedge[\psi]=[\phi \wedge \psi], \\
& f(x \vee y)=[\phi] \vee[\psi]=[\phi \vee \psi], \\
& f(x \Rightarrow y)=[\phi] \Rightarrow[\psi]=[\phi \rightarrow \psi], \\
& f((x \Rightarrow y) \wedge(y \Rightarrow x))=[\phi \leftrightarrow \psi] \quad \text { (by the equalities above). }
\end{aligned}
$$

(Students get 2 points for showing surjectivity) We conclude that f is a bijective algebra homomorphism, so B and $B(T)$ are isomorphic.

2 Cantor's Theorem (4 points total)

a) Suppose Cantor's Theorem is not true. Then there is a set X and a bijection $f: X \rightarrow \mathcal{P}(X)$ (It is trivial to show that the power set of a set is not of lower cardinality than that set). Clearly X is nonempty because \emptyset and $\{\emptyset\}$ have different finite cardinality. Define the subset $X_{0} \subseteq X$ by:

$$
X_{0}=\{x \in X: x \notin f(x)\}
$$

By Zermelo's third Axiom of separation this indeed is a set. And it is a subset of X, so $X_{0} \in \mathcal{P}(X)$. Since f is a bijection, there must be a $x \in X$ such that $X_{0}=f(x)$. Like in Zermelo's proof we again consider the two possible cases:
$x \in X_{0}$: Then, by definition of $X_{0}, x \notin f(x)=X_{0}$ which is a contradiction.
$x \in X \backslash X_{0}$: Then x is an element of X, not in $f(x)$. So $x \in X_{0}$ which again is a contradiction.

Thus, we get a contradiction and conclude that there is no such bijection. Thereby proving the theorem. (Students get 3 points for Proving the theorem)
b) Suppose such a set U does exist. Then by the powerset axiom $\mathcal{P}(U)$ is also a set and all its elements are contained in U. So $|\mathcal{P}(U)| \leq|U|$ which is in contradiction with Cantor's theorem.(Students get 1 point for showing this)

