Exercise 2

(a) There are several ways to do this. One is the following: let $\alpha \in$ ORD with $\alpha \neq \emptyset$ and let $Z_{\alpha}=\left\{\left\langle x, 0_{B}\right\rangle \mid x \in V_{\alpha}^{(B)}\right\}$. Then

$$
\begin{aligned}
\llbracket Z_{\alpha}=\emptyset \rrbracket & =\bigwedge_{x \in \operatorname{dom}\left(Z_{\alpha}\right)}\left[Z_{\alpha}(x) \Rightarrow \llbracket x \in \emptyset \rrbracket\right] \wedge \bigwedge_{y \in \operatorname{dom}(\emptyset)}\left[\emptyset(x) \Rightarrow \llbracket x \in Z_{\alpha} \rrbracket\right] \\
& =\bigwedge_{x \in \operatorname{dom}\left(Z_{\alpha}\right)}[0 \Rightarrow \llbracket x \in \emptyset \rrbracket] \wedge 1 \\
& =\bigwedge_{x \in \operatorname{dom}\left(Z_{\alpha}\right)}[1] \wedge 1=1 .
\end{aligned}
$$

Now consider $u=\left\{\left\langle Z_{\alpha}, 0\right\rangle,\langle\emptyset, 1\rangle\right\}$. We have

$$
\begin{aligned}
\llbracket Z_{\alpha} \in u \rrbracket & =\bigvee_{x \in \operatorname{dom}(u)}\left[u(x) \wedge \llbracket Z_{\alpha}=x \rrbracket\right] \\
& =\left[u\left(Z_{\alpha}\right) \wedge \llbracket Z_{\alpha}=Z_{\alpha} \rrbracket\right] \vee\left[u(\emptyset) \wedge \llbracket Z_{\alpha}=\emptyset \rrbracket\right] \\
& =\left[u\left(Z_{\alpha}\right) \wedge \llbracket Z_{\alpha}=Z_{\alpha} \rrbracket\right] \vee[1 \wedge 1]=1 .
\end{aligned}
$$

(b) Let u, v be as given. First we will show that v is extensional. We have for all $y \in \operatorname{dom}(v)=\operatorname{dom}(u)$

$$
\begin{aligned}
v(y) \leq \llbracket y \in v \rrbracket & =\bigvee_{x \in \operatorname{dom}(v)}[v(x) \wedge \llbracket x=y \rrbracket] \\
& =\bigvee_{x \in \operatorname{dom}(u)}[\llbracket x \in u \rrbracket \wedge \llbracket x=y \rrbracket] \leq \bigvee_{x \in \operatorname{dom}(u)}[\llbracket y \in u \rrbracket=v(y),
\end{aligned}
$$

and thus $\llbracket y \in u \rrbracket=v(y)=\llbracket y \in v \rrbracket$. Therefore

$$
\begin{aligned}
\llbracket u=v \rrbracket & =\bigwedge_{x \in \operatorname{dom}(u)}[u(x) \Rightarrow \llbracket x \in v \rrbracket] \wedge \bigwedge_{y \in \operatorname{dom}(v)}[v(y) \Rightarrow \llbracket y \in u \rrbracket] \\
& =\bigwedge_{x \in \operatorname{dom}(u)}[u(x) \Rightarrow \llbracket x \in u \rrbracket] \wedge \bigwedge_{y \in \operatorname{dom}(v)}[v(y) \Rightarrow v(y)] \\
& =1 \wedge 1=1,
\end{aligned}
$$

as required.

