Seminar on Set Theory

Solution for Hand-in Lecture 4

October 9, 2015

Assignment 1. Let B be a Boolean algebra and F be a principal, $\mathcal{P}(B)$ complete ultrafilter on B. Define

$$\pi(a) = \{\pi(x) : x \in dom(a), a(x) \in F\}.$$

Prove that for any $a, b \in V^{(B)}$,

$$\llbracket a \in b \rrbracket^B \in F \text{ iff } \pi(a) \in \pi(b)$$
(1)

$$\llbracket a = b \rrbracket^B \in F \text{ iff } \pi(a) = \pi(b).$$

$$\tag{2}$$

We will abbreviate $\llbracket \phi \rrbracket^B$ to $\llbracket \phi \rrbracket$ for the remainder of this document.

Solution 1. We prove by induction on the rank of a and b. Recall that we can well-order $Ord \times Ord$ by $\langle \alpha, \beta \rangle < \langle \alpha', \beta' \rangle$ if $\langle \max\{\alpha, \beta\}, \alpha, \beta \rangle < \langle \max\{\alpha', \beta'\}, \alpha', \beta' \rangle$ lexicographically (page 18 of the book). We proceed by induction on this order. The induction hypothesis is that for all $\langle \alpha', \beta' \rangle < \langle \alpha, \beta \rangle$ we have, for all $x, y \in V^{(B)}$ with $\operatorname{rank}(x) = \alpha'$ and $\operatorname{rank}(y) = \beta'$:

$$\llbracket x \in y \rrbracket \in F \text{ iff } \pi(x) \in \pi(y)$$
$$\llbracket x = y \rrbracket \in F \text{ iff } \pi(x) = \pi(y)$$

We prove that for all $a, b \in V^{(B)}$ with $\operatorname{rank}(a) = \alpha \operatorname{rank}(b) = \beta$, statements 1 and 2 hold.

Statement 1, left to right: Suppose $[a \in b] \in F$. Recall

$$\llbracket a \in b \rrbracket = \bigvee_{x \in \operatorname{dom}(b)} \left[b(x) \land \llbracket a = x \rrbracket \right].$$

By $\mathcal{P}(B)$ -completeness of F, there is a $u \in \text{dom}(b)$ such that $b(x) \wedge \llbracket a = u \rrbracket \in F$. Hence $b(u) \in F$ and $\llbracket a = u \rrbracket \in F$. By the first we have $\pi(u) \in \pi(b)$. Note now that rank(u) < rank(b) and thus we can apply the induction hypothesis; as $\llbracket a = u \rrbracket \in F, \pi(a) = \pi(u)$. Thus $\pi(a) \in \pi(b)$.

Statement 1, right to left: Suppose $\pi(a) \in \pi(b)$. Choose a $u \in \text{dom}(b)$ such that $\pi(u) = \pi(a)$ and $b(u) \in F$ (this exists by the definition of π). As rank(u) < rank(b), by induction we have that $\llbracket a = u \rrbracket \in F$. Thus, as F is a filter, $b(u) \wedge \llbracket a = u \rrbracket \in F$. Now note that

$$b(u) \wedge \llbracket a = u \rrbracket \leq \bigvee_{x \in \operatorname{dom}(b)} [b(x) \wedge \llbracket a = x \rrbracket] = \llbracket a \in b \rrbracket.$$

Hence $[a \in b] \in F$, as F is upwards closed.

Statement 2, left to right: Suppose $[a = b] \in F$. Recall

$$\llbracket a = b \rrbracket = \bigwedge_{x \in \operatorname{dom}(a)} [a(x) \Rightarrow \llbracket x \in b \rrbracket] \land \bigwedge_{y \in \operatorname{dom}(b)} [b(y) \Rightarrow \llbracket y \in a \rrbracket].$$

We start by showing $\pi(a) \subset \pi(b)$, and the converse inclusion follows by symmetry. Let $u \in \text{dom}(a)$ such that $a(u) \in F$ (and hence, $\pi(u) \in \pi(a)$). We show $\pi(u) \in \pi(b)$.

As $\llbracket a = b \rrbracket \in F$, we have $a(u) \Rightarrow \llbracket u \in b \rrbracket \in F$. As F is a filter, $(a(u) \Rightarrow$ $\llbracket u \in b \rrbracket) \land a(u) \in F$, and thus $\llbracket u \in b \rrbracket \in F$. Now, $\operatorname{rank}(u) < \operatorname{rank}(a)$ so by the induction hypothesis we have $\pi(u) \in \pi(b)$.

Statement 2, right to left: Suppose $\pi(a) = \pi(b)$. Choose $u \in \text{dom}(a)$. If $a(u) \in F$ then $\pi(u) \in \pi(a)$, hence $\pi(u) \in \pi(b)$, and hence (as rank(u) < rank<math>(a)) we by induction have $\llbracket u \in b \rrbracket \in F$. Therefore, $a(u) \land \llbracket u \in b \rrbracket \in F$. If $a(u) \notin F$, then $a(u)^* \in F$ because F is an ultrafilter. Thus, as $a(u) \Rightarrow \llbracket u \in b \rrbracket = a(u)^* \lor$ $\llbracket u \in b \rrbracket$ by the properties of a Boolean algebra, we have $a(u) \Rightarrow \llbracket u \in b \rrbracket \in F$.

By the same argument we show that for any $v \in \text{dom}(b), b(v) \Rightarrow [v \in a] \in F$. Hence

$$[\![a=b]\!] = \bigwedge_{x \in \operatorname{dom}(a)} [a(x) \Rightarrow [\![x \in b]\!]] \land \bigwedge_{y \in \operatorname{dom}(b)} [b(y) \Rightarrow [\![y \in a]\!]]$$

is an infinite meet of elements of F and is thus in F (because F is principal). Therefore, $\llbracket a = b \rrbracket \in F$.

Assignment 2. Let α be an ordinal and for every $\xi < \alpha$, let $b_{\xi} \in B$, where B is a complete Boolean algebra. For each $\xi < \alpha$, we define

$$a_{\xi} = b_{\xi} \wedge \left(\bigvee_{\eta < \xi} b_{\eta}\right)^*.$$

Show that

$$\bigvee_{\xi < \alpha} a_{\xi} = \bigvee_{\xi < \alpha} b_{\xi}.$$

Solution 2. We use transfinite induction, up to α , to show that the equality

$$\bigvee_{\xi<\beta}a_{\xi}=\bigvee_{\xi<\beta}b_{\xi}$$

holds for all $\beta \leq \alpha$, so in particular for $\beta = \alpha$. Let $\beta \leq \alpha$ and suppose that the equality holds for all $\gamma < \beta$. Then for all $\gamma < \beta$,

/

$$\bigvee_{\eta \le \gamma} a_{\eta} = a_{\gamma} \lor \bigvee_{\eta < \gamma} a_{\eta} = a_{\gamma} \lor \bigvee_{\eta < \gamma} b_{\eta} = \left[b_{\gamma} \land \left(\bigvee_{\eta < \gamma} b_{\eta} \right)^{*} \right] \lor \bigvee_{\eta < \gamma} b_{\eta}$$
$$= \left[b_{\gamma} \lor \bigvee_{\eta < \gamma} b_{\eta} \right] \land \left[\left(\bigvee_{\eta < \gamma} b_{\eta} \right)^{*} \lor \left(\bigvee_{\eta < \gamma} b_{\eta} \right) \right] = b_{\gamma} \lor \bigvee_{\eta < \gamma} b_{\eta} = \bigvee_{\eta \le \gamma} b_{\eta}$$
ows that

It follows that

$$\bigvee_{\xi < \beta} a_{\xi} = \bigvee_{\gamma < \beta} \left(\bigvee_{\eta \le \gamma} a_{\eta} \right) = \bigvee_{\gamma < \beta} \left(\bigvee_{\eta \le \gamma} b_{\eta} \right) = \bigvee_{\xi < \beta} b_{\xi};$$

completing the induction.