Seminar on Set Theory Hand-in Exercise 5

16 October 2015

Solutions to Exercise 1

(i) We see that $\{\llbracket \phi(y) \rrbracket : y \in V^{(B)}\}$ is a subset of B (by Separation), hence by Replacement (using the formula $\psi(x, y) \equiv y \in V^{(B)} \land x = \llbracket \phi(y) \rrbracket$) we have a set $v \subseteq V^{(B)}$ such that $\bigvee_{y \in V^{(B)}} \llbracket \phi(y) \rrbracket = \bigvee_{y \in v} \llbracket \phi(y) \rrbracket$. Again by Replacement (using the formula $\chi(x, y) \equiv Ord(y) \land x \in V_y^{(B)}$) [and Separation] we have a set $a \subseteq ORD$ such that $\forall x \in v \exists y \in ax \in V_y^{(B)}$. By applying Union to a we obtain a set $u = \{\alpha\}$ where $\chi \leq \alpha$ for all $\chi \in a$, so that we conclude our proof by obtaining $\bigvee_{y \in V^{(B)}} \llbracket \phi(y) \rrbracket = \bigvee_{y \in v} \llbracket \phi(y) \rrbracket \leq \bigvee_{y \in V_{\alpha}^{(B)}} \llbracket \phi(y) \rrbracket \leq \bigvee_{y \in V^{(B)}} \llbracket \phi(y) \rrbracket$. Points awarded: 1 point for a correct proof outline, 1 point for filling in the right details such as precise use of axioms.

(ii) With the correction that the elements x must belong to a set u (otherwise we find a counterexample in the formula $\varphi(x, y) \equiv x \in V_y^{(B)}$), we can pair these x with all the elements $\llbracket \phi(x, y) \rrbracket$ and repeat the proof procedure above. That is, we have a subset $S = \{\llbracket \phi(x, y) \rrbracket : x \in u, y \in V^{(B)}\}$ of B on which we can apply Replacement to find a set $v \subseteq V^{(B)}$ such that for all $x \in u$ and all $b \in S$ we have a $y \in v$ such that $\llbracket \phi(x, y) \rrbracket = b$. We can then continue along the same lines to find our desired α such that $\bigvee_{y \in V^{(B)}} \llbracket \phi(x, y) \rrbracket = \bigvee_{u \in V_0^{(B)}} \llbracket \phi(x, y) \rrbracket$.

Points awarded: $\frac{1}{2}$ point for making plausible that we can repeat the proof method of (i); $\frac{1}{2}$ point for correctly using the essential fact that the elements x belong to a set u.

Solutions to Exercise 2

(i) In the proof of Lemma 1.38 (the power set axiom) it is established that $\llbracket \forall x [x \in v \leftrightarrow x \subseteq u] \rrbracket = 1$ where $v \in V^{(B)}$ is defined by $\operatorname{dom}(v) = B^{\operatorname{dom}(u)}$ with $v(x) = \llbracket x \subseteq u \rrbracket = \llbracket \forall y \in x(y \in u) \rrbracket$ for all $x \in \operatorname{dom}(v)$. We obtain that

$$\begin{split} v(x) &= \left[\!\left[\forall y \in x (y \in u)\right]\!\right] = \bigwedge_{y \in \operatorname{dom}(x)} [x(y) \Rightarrow \left[\!\left[y \in u\right]\!\right] = \bigwedge_{y \in \operatorname{dom}(u)} [x(y) \Rightarrow \bigvee_{a \in \operatorname{dom}(u)} \left[\!\left[y = a\right]\!\right] \text{ since } \operatorname{dom}(x) = \operatorname{dom}(u) \text{ for any } x \in \operatorname{dom}(v) = B^{\operatorname{dom}(u)} \text{ and } \text{ it is given that } u(x) = 1 \text{ for all } a \in \operatorname{dom}(u). \text{ It is then easy to see that the last expression is equal to 1: either dom(u) is empty and it follows trivially, or we can take <math>a = y$$
 to see the implication to be $x(y) \Rightarrow 1$ and hence 1. Thus we find that $v = B^{\operatorname{dom}(u)} \times \{1\} = w$, hence we can use the mentioned result to conclude that $\left[\!\left[\forall x [x \in w \leftrightarrow x \subseteq u]\right]\!\right] = 1. \end{split}$

Points awarded: $\frac{1}{2}$ point for a partial proof (for instance of only one side of the implication), 1 point for a complete proof.

(ii) An example which works for any Boolean algebra B can be given by defining $u = \{(\emptyset, 0)\}$ and $x = \{(\emptyset, 1)\}$. Since clearly $x \in B^{\operatorname{dom}(u)}$, we immediately obtain $1 = w(x) \leq [x \in w]$. On the other hand we have $[x \subseteq u] = [\forall y \in x[y \in u]] = \bigvee_{y \in \operatorname{dom}(x)} [x(y) \Rightarrow [y \in u]] = x(\emptyset) \Rightarrow [u(\emptyset) \land [\emptyset = \emptyset]] = 1 \Rightarrow [0 \land 1] = 0$. Thus $[x \in w \to x \subseteq u] = 0$, which is enough for u to be an example where $[\forall x[x \in w \leftrightarrow x \subseteq u]] \neq 1$.

Points awarded: $\frac{1}{2}$ point for any correct example, $\frac{1}{2}$ point for showing it to be correct.

Solutions to Exercise 3

(i) For reflexivity, suppose $y \in Y$. Since Y is a core for X we have $V^{(B)} \models y \in X$; since X is a poset in $V^{(B)}$ we have $V^{(B)} \models \forall x \in X(x \leq_X x)$. Combining the two yields $V^{(B)} \models y \leq_X y$ which is $[y \leq_X y] = 1$, and so $y \leq_Y y$.

For transitivity, suppose $y, y', y'' \in Y$ such that $y \leq_Y y'$ and $y' \leq_Y y''$. Because Y is a core for X we have $V^{(B)} \models y \in X$, $V^{(B)} \models y' \in X$ and $V^{(B)} \models y'' \in X$; from the definitions we also have $V^{(B)} \models y \leq_X y'$ and $V^{(B)} \models y' \leq_X y''$. Since X is a poset in $V^{(B)}$ we have $V^{(B)} \models \forall x \in X \forall x' \in X \forall x'' \in X \forall x'' \in X (x \leq_X x' \land x' \leq_X x'' \to x \leq_X x'')$, thus we can combine these to obtain $V^{(B)} \models y \leq_X y''$, and so $y \leq_Y y''$.

For antisymmetry, suppose $y, y' \in Y$ such that $y \leq_Y y'$ and $y' \leq_Y y$. Again since Y is a core for X we have $V^{(B)} \models y \in X$ and $V^{(B)} \models y' \in X$, as well as $V^{(B)} \models y \leq_X y'$ and $V^{(B)} \models y' \leq_X y$ from the definitions. By X being a poset in $V^{(B)}$ we have $V^{(B)} \models \forall x \in X \forall x' \in X (x \leq_X x' \land x' \leq_X x \to x = x')$, hence we obtain $V^{(B)} \models y = y'$. By the definition of a core y is the unique $y \in Y$ such that $V^{(B)} \models y = y$, from which we can conclude that y = y'.

Points awarded: for each property, an intelligible proof outline is worth $\frac{1}{2}$ point, with another $\frac{1}{2}$ point if it is sufficiently motivated from the definitions of X as poset, Y as core for X, and of the relation \leq_Y itself.

(ii) First we will have to show that indeed $V^{(B)} \models C' \subseteq X$. If $C = \emptyset$, then the same holds for C', hence we may assume C is nonempty. Now $\llbracket x \in C' \rrbracket = \bigvee_{z \in \text{dom}} (C') [C'(z) \land \llbracket x = z \rrbracket] = \bigvee_{y \in C} \llbracket x = y \rrbracket$ by definition. Since $C \subseteq Y$ where \overline{Y} is a core for X, we have $\llbracket y \in X \rrbracket = 1$ for each $y \in C$. Thus $\bigvee_{y \in C} \llbracket x = y \rrbracket = \bigvee_{y \in C} \llbracket x = y \land y \in X \rrbracket \leq \bigvee_{y \in C} \llbracket x \in X \rrbracket = \llbracket x \in X \rrbracket, \text{ giving us}$ $\llbracket x \in C' \to x \in X \rrbracket = 1$ as desired.

It remains to show that C' is totally ordered, i.e. $V^{(B)} \models \forall x \in C' \forall x' \in C'$ $(x \leq_X x' \lor x' \leq_X x)$. To this end we shall prove that $[x \in C' \land x' \in C'] \leq$ $[x \leq_X x' \lor x' \leq_X x]$. Since C is a chain, we have $y \leq_Y y' \lor y' \leq_Y y$ for all $y, y' \in C$, so $[[y \leq_X y' \lor y' \leq_X y]] = 1$ for all $y, y' \in C$. After some rewriting which uses C'(x) = C'(x') = 1 and distributivity we find $\llbracket x \in C' \land x' \in C' \rrbracket = \bigvee_{z \in C} \bigvee_{z' \in C} \llbracket x = z \land x' = z' \rrbracket$. Combining the two gives $\begin{bmatrix} x \in C & \forall x' \in C \end{bmatrix} = \bigvee_{z \in C} \bigvee_{z' \in C} \begin{bmatrix} x - z & \forall x' - z \end{bmatrix}. \text{ Combining the two gives} \\ \begin{bmatrix} x \in C' \land x' \in C' \end{bmatrix} = \bigvee_{z \in C} \bigvee_{z' \in C} [\llbracket x = y \land x' = y' \rrbracket \land \llbracket y \leq_X y' \lor y' \leq_X y \rrbracket] \leq \\ \bigvee_{z \in C} \bigvee_{z' \in C} \llbracket x \leq_X x' \lor x' \leq_X x \rrbracket = \llbracket x \leq_X x' \lor x' \leq_X x \rrbracket \text{ as required.} \\ \text{Points awarded: } \frac{1}{2} \text{ point for showing that } V^{(B)} \models C' \subseteq X, \frac{1}{2} \text{ point for a viable proof strategy for showing } C' \text{ is a total order, 1 point for providing} \end{cases}$

the necessary derivations.