Seminar on Set Theory Hand-in Exercise 5

16 October 2015

Solutions to Exercise 1

(i) We see that $\left\{\llbracket \phi(y) \rrbracket: y \in V^{(B)}\right\}$ is a subset of B (by Separation), hence by Replacement (using the formula $\left.\psi(x, y) \equiv y \in V^{(B)} \wedge x=\llbracket \phi(y) \rrbracket\right)$ we have a set $v \subseteq V^{(B)}$ such that $\bigvee_{y \in V^{(B)}} \llbracket \phi(y) \rrbracket=\bigvee_{y \in v} \llbracket \phi(y) \rrbracket$. Again by Replacement (using the formula $\chi(x, y) \equiv \operatorname{Ord}(y) \wedge x \in V_{y}^{(B)}$) [and Separation] we have a set $a \subseteq O R D$ such that $\forall x \in v \exists y \in a x \in V_{y}^{(B)}$. By applying Union to a we obtain a set $u=\{\alpha\}$ where $\chi \leq \alpha$ for all $\chi \in a$, so that we conclude our proof by obtaining $\bigvee_{y \in V^{(B)}} \llbracket \phi(y) \rrbracket=\bigvee_{y \in v} \llbracket \phi(y) \rrbracket \leq \bigvee_{y \in V_{\alpha}^{(B)}} \llbracket \phi(y) \rrbracket \leq \bigvee_{y \in V^{(B)}} \llbracket \phi(y) \rrbracket$. Points awarded: 1 point for a correct proof outline, 1 point for filling in the right details such as precise use of axioms.
(ii) With the correction that the elements x must belong to a set u (otherwise we find a counterexample in the formula $\left.\varphi(x, y) \equiv x \in V_{y}^{(B)}\right)$, we can pair these x with all the elements $\llbracket \phi(x, y) \rrbracket$ and repeat the proof procedure above. That is, we have a subset $S=\left\{\llbracket \phi(x, y) \rrbracket: x \in u, y \in V^{(B)}\right\}$ of B on which we can apply Replacement to find a set $v \subseteq V^{(B)}$ such that for all $x \in u$ and all $b \in S$ we have a $y \in v$ such that $\llbracket \phi(x, y) \rrbracket=b$. We can then continue along the same lines to find our desired α such that $\bigvee_{y \in V^{(B)}} \llbracket \phi(x, y) \rrbracket=\bigvee_{y \in V_{\alpha}^{(B)}} \llbracket \phi(x, y) \rrbracket$.
Points awarded: $\frac{1}{2}$ point for making plausible that we can repeat the proof method of (i); $\frac{1}{2}$ point for correctly using the essential fact that the elements x belong to a set u.

Solutions to Exercise 2

(i) In the proof of Lemma 1.38 (the power set axiom) it is established that $\llbracket \forall x[x \in v \leftrightarrow x \subseteq u] \rrbracket=1$ where $v \in V^{(B)}$ is defined by $\operatorname{dom}(v)=B^{\operatorname{dom}(u)}$ with $v(x)=\llbracket x \subseteq u \rrbracket=\llbracket \forall y \in x(y \in u) \rrbracket$ for all $x \in \operatorname{dom}(v)$. We obtain that
$v(x)=\llbracket \forall y \in x(y \in u) \rrbracket=\bigwedge_{y \in \operatorname{dom}(x)}[x(y) \Rightarrow \llbracket y \in u \rrbracket]=\bigwedge_{y \in \operatorname{dom}(u)}[x(y) \Rightarrow$ $\left.\bigvee_{a \in \operatorname{dom}(u)} \llbracket y=a \rrbracket\right]$ since $\operatorname{dom}(x)=\operatorname{dom}(u)$ for any $x \in \operatorname{dom}(v)=B^{\operatorname{dom}(u)}$ and it is given that $u(x)=1$ for all $a \in \operatorname{dom}(u)$. It is then easy to see that the last expression is equal to 1 : either $\operatorname{dom}(u)$ is empty and it follows trivially, or we can take $a=y$ to see the implication to be $x(y) \Rightarrow 1$ and hence 1 . Thus we find that $v=B^{\operatorname{dom}(u)} \times\{1\}=w$, hence we can use the mentioned result to conclude that $\llbracket \forall x[x \in w \leftrightarrow x \subseteq u\rfloor \rrbracket=1$.
Points awarded: $\frac{1}{2}$ point for a partial proof (for instance of only one side of the implication), 1 point for a complete proof.
(ii) An example which works for any Boolean algebra B can be given by defining $u=\{(\emptyset, 0)\}$ and $x=\{(\emptyset, 1)\}$. Since clearly $x \in B^{\operatorname{dom}(u)}$, we immediately obtain $1=w(x) \leq \llbracket x \in w \rrbracket$. On the other hand we have $\llbracket x \subseteq u \rrbracket=\llbracket \forall y \in x\left[y \in u \rrbracket \rrbracket=\bigvee_{y \in \operatorname{dom}(x)}[x(y) \Rightarrow \llbracket y \in u \rrbracket]=x(\emptyset) \Rightarrow\right.$ $[u(\emptyset) \wedge \llbracket \emptyset=\emptyset \rrbracket]=1 \Rightarrow[0 \wedge 1]=0$. Thus $\llbracket x \in w \rightarrow x \subseteq u \rrbracket=0$, which is enough for u to be an example where $\llbracket \forall x[x \in w \leftrightarrow x \subseteq u\rfloor \rrbracket \neq 1$.
Points awarded: $\frac{1}{2}$ point for any correct example, $\frac{1}{2}$ point for showing it to be correct.

Solutions to Exercise 3

(i) For reflexivity, suppose $y \in Y$. Since Y is a core for X we have $V^{(B)} \models y \in$ X; since X is a poset in $V^{(B)}$ we have $V^{(B)} \models \forall x \in X\left(x \leq_{X} x\right)$. Combining the two yields $V^{(B)} \models y \leq_{X} y$ which is $\llbracket y \leq_{X} y \rrbracket=1$, and so $y \leq_{Y} y$.
For transitivity, suppose $y, y^{\prime}, y^{\prime \prime} \in Y$ such that $y \leq_{Y} y^{\prime}$ and $y^{\prime} \leq_{Y} y^{\prime \prime}$. Because Y is a core for X we have $V^{(B)} \models y \in X, V^{(B)} \models y^{\prime} \in X$ and $V^{(B)} \models y^{\prime \prime} \in X$; from the definitions we also have $V^{(B)} \models y \leq_{x} y^{\prime}$ and $V^{(B)} \models y^{\prime} \leq_{x} y^{\prime \prime}$. Since X is a poset in $V^{(B)}$ we have $V^{(B)} \models \forall x \in X \forall x^{\prime} \in$ $X \forall x^{\prime \prime} \in X\left(x \leq_{X} x^{\prime} \wedge x^{\prime} \leq_{X} x^{\prime \prime} \rightarrow x \leq_{X} x^{\prime \prime}\right)$, thus we can combine these to obtain $V^{(B)} \models y \leq_{X} y^{\prime \prime}$, and so $y \leq_{Y} y^{\prime \prime}$.
For antisymmetry, suppose $y, y^{\prime} \in Y$ such that $y \leq_{Y} y^{\prime}$ and $y^{\prime} \leq_{Y} y$. Again since Y is a core for X we have $V^{(B)} \models y \in X$ and $V^{(B)} \models y^{\prime} \in X$, as well as $V^{(B)} \models y \leq_{X} y^{\prime}$ and $V^{(B)} \models y^{\prime} \leq_{X} y$ from the definitions. By X being a poset in $V^{(B)}$ we have $V^{(B)} \models \forall x \in X \forall x^{\prime} \in X\left(x \leq_{X} x^{\prime} \wedge x^{\prime} \leq_{X} x \rightarrow x=x^{\prime}\right)$, hence we obtain $V^{(B)} \models y=y^{\prime}$. By the definition of a core y is the unique $y \in Y$ such that $V^{(B)} \models y=y$, from which we can conclude that $y=y^{\prime}$.
Points awarded: for each property, an intelligible proof outline is worth $\frac{1}{2}$ point, with another $\frac{1}{2}$ point if it is sufficiently motivated from the definitions of X as poset, Y as core for X, and of the relation \leq_{Y} itself.
(ii) First we will have to show that indeed $V^{(B)} \models C^{\prime} \subseteq X$. If $C=\emptyset$, then the same holds for C^{\prime}, hence we may assume C is nonempty. Now $\llbracket x \in C^{\prime} \rrbracket=\bigvee_{z \in \text { dom }}\left(C^{\prime}\right)\left[C^{\prime}(z) \wedge \llbracket x=z \rrbracket\right]=\bigvee_{y \in C} \llbracket x=y \rrbracket$ by definition. Since $C \subseteq Y$ where Y is a core for X, we have $\llbracket y \in X \rrbracket=1$ for each $y \in C$. Thus $\bigvee_{y \in C} \llbracket x=y \rrbracket=\bigvee_{y \in C} \llbracket x=y \wedge y \in X \rrbracket \leq \bigvee_{y \in C} \llbracket x \in X \rrbracket=\llbracket x \in X \rrbracket$, giving us $\llbracket x \in C^{\prime} \rightarrow x \in X \rrbracket=1$ as desired.
It remains to show that C^{\prime} is totally ordered, i.e. $V^{(B)} \vDash \forall x \in C^{\prime} \forall x^{\prime} \in C^{\prime}$ $\left(x \leq_{X} x^{\prime} \vee x^{\prime} \leq_{X} x\right)$. To this end we shall prove that $\llbracket x \in C^{\prime} \wedge x^{\prime} \in C^{\prime} \rrbracket \leq$ $\llbracket x \leq_{X} x^{\prime} \vee x^{\prime} \leq_{X} x \rrbracket$. Since C is a chain, we have $y \leq_{Y} y^{\prime} \vee y^{\prime} \leq_{Y} y$ for all $y, y^{\prime} \in C$, so $\llbracket y \leq_{x} y^{\prime} \vee y^{\prime} \leq_{x} y \rrbracket=1$ for all $y, y^{\prime} \in C$. After some rewriting which uses $C^{\prime}(x)=C^{\prime}\left(x^{\prime}\right)=1$ and distributivity we find $\llbracket x \in C^{\prime} \wedge x^{\prime} \in C^{\prime} \rrbracket=\bigvee_{z \in C} \bigvee_{z^{\prime} \in C} \llbracket x=z \wedge x^{\prime}=z^{\prime} \rrbracket$. Combining the two gives $\llbracket x \in C^{\prime} \wedge x^{\prime} \in C^{\prime} \rrbracket=\bigvee_{z \in C} \bigvee_{z^{\prime} \in C}\left[\llbracket x=y \wedge x^{\prime}=y^{\prime} \rrbracket \wedge \llbracket y \leq_{x} y^{\prime} \vee y^{\prime} \leq_{x} y \rrbracket\right] \leq$ $\bigvee_{z \in C} \bigvee_{z^{\prime} \in C} \llbracket x \leq_{X} x^{\prime} \vee x^{\prime} \leq_{X} x \rrbracket=\llbracket x \leq_{X} x^{\prime} \vee x^{\prime} \leq_{X} x \rrbracket$ as required.
Points awarded: $\frac{1}{2}$ point for showing that $V^{(B)} \models C^{\prime} \subseteq X, \frac{1}{2}$ point for a viable proof strategy for showing C^{\prime} is a total order, 1 point for providing the necessary derivations.

