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Exercise 1.

(a) Suppose p, q ∈ C(x, y) and q + p, so there exists an element (a, b) ∈ p such that
(a, b) 6∈ q. Now suppose that there is an element c ∈ y\{b} such that (a, c) ∈ q, then
choose p′ = q. If such an element c does not exist, choose an element c ∈ y\{b} at
random, which is always possible because y contains at least two elements, and define
p′ = q ∪ {(a, c)}. Now suppose that there is some element r ∈ C(x, y) such that r ⊇ p
and r ⊇ p′, then (a, b) ∈ r and (a, c) ∈ r, but b 6= c, so r is not well-defined. So such
an r cannot exist, so ¬Comp(p, p′), and therefore we find that ∀p, q ∈ C(x, y)(q + p→
∃p′ ⊇ q¬Comp(p, p′)). �

This exercise was worth 2 points. Students lost 1 point if they failed to notice the two
different cases. Students lost 1

2 point if they didn’t mention the fact that y contains at
least two elements where it is needed.

(b) First, we show that the image of N is in RO(yx). Since the topology on y is the discrete
topology we know that {{a} | a ∈ y} is a basis for y, and that all these sets are clopen.
Now define for all x0 ∈ x, y0 ∈ y the collection S(x0, y0) := {f ∈ yx | f(x0) = y0}. Then
{S(x0, y0) | x0 ∈ x, y0 ∈ y} is a subbasis for the product topology on yx, and it consists
of clopen sets. This means that the collection of all finite non-empty intersections of
elements of {S(x0, y0) | x0 ∈ x, y0 ∈ y} is a basis for the product topology on yx. For any
set {S(x0, y0), ..., S(xn, yn)} with nonempty intersection, define the function p ∈ C(x, y)
by p(xi) = yi for 0 ≤ i ≤ n. Then S(x0, y0)∩ ...∩ S(xn, yn) = {f ∈ yx | p ⊆ f} = N(p).
So the N(p) are a basis for the product topology on yx. We also see that N(p) is a
finite intersection of clopen sets, therefore N(p) is itself clopen. In particular, the N(p)
are contained in RO(yx).

Next, we show that 〈RO(yx), N〉 is a Boolean completion of C(x, y). Since yx is a
topological space we know from the first hand-in exercise that RO(yx) is a complete
Boolean algebra. So we have to prove that N is an order-isomorphism of C(x, y) onto
a dense subset of RO(yx). We will first show that N is an injective map. Suppose that
p, q ∈ C(x, y) and N(p) = N(q). Then p ∈ N(q) so q ⊆ p, and q ∈ N(p) so p ⊆ q.
Because (C(x, y),⊇) is a poset we find that p = q. So N is indeed injective, and in
particular, N is a bijective map onto its image.
Now we show that N is an order-isomorphism. Suppose that p, q ∈ C(x, y) and p ≤ q,
so p ⊇ q. Then if f ∈ N(p) we see that q ⊆ p ⊆ f , so f ∈ N(q). This means that
N(p) ⊆ N(q), so N(p) ≤ N(q). So N is order-preserving. On the other hand, if
N(p) ≤ N(q), then p ∈ N(p) ⊆ N(q), whence p ⊇ q. But this means precisely that
p ≤ q, so N is order-reflecting as well.
The last thing we have to show is that the image {N(p) | p ∈ C(x, y)} of N is dense
in RO(yx). We notice again that p ∈ N(p) for every p ∈ C(x, y), so ∅ 6= N(p) for all
p ∈ C(x, y). Suppose X 6= ∅ is some element of RO(yx). Then in particular, X is open,
so because the N(p) form a basis for the topology on yx, the set X can be written as a
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union of sets of the form N(p). This means there must be an N(p) such that N(p) ⊆ X.
So the N(p) are dense in RO(yx).
This completes the proof that 〈RO(yx), N〉 is a Boolean completion of C(x, y). �

The first part was worth one point, which could only be obtained with a clear explana-
tion of the topological ideas behind it. The second part was worth 2 points, and contai-
ned injectivity, order-preserving, order-reflecting, mentioning that RO(yx) is a complete
Boolean algebra and showing that the image of N is dense in it. Showing that the image
of N is dense was worth 1 point, students lost 1

2 point if they forgot to show that ∅ is
not in the image of N . The other parts where worth 1 point together. Students lost 1

2 if
they forgot one or made a mistake in one of them.

Exercise 2. As always, we drop the superscript from J·KB.

(a) First, suppose that p 
 σ → τ and let q ≤ p such that q 
 σ. Then we have q ≤ p ≤
Jσ → τK = JσK ⇒ JτK and q ≤ JσK, whence q ≤ (JσK ⇒ JτK) ∧ JσK ≤ JτK. This means
that q 
 τ , which establishes the first direction.

Now suppose that for any q ≤ p such that q 
 σ, we also have q 
 τ . Then for any such
q, we also have q 1 ¬τ by property (vi) of the hand-out. That is,

∀q ≤ p (q 
 σ → q 1 ¬τ) .

This is equivalent to
¬∃q ≤ p (q 
 σ and q 
 ¬τ) .

By properties (iii) and (v) from the hand-out, this means that p 
 ¬(σ ∧ ¬τ). But
σ → τ is equivalent to ¬(σ ∧ ¬τ), which means that Jσ → τK = J¬(σ ∧ ¬τ)K. We may
conclude that p 
 σ → τ , which establishes the other direction. �

It was also possible to use the definition of Jσ → τK = JσK ⇒ JτK directly, as many
students in fact did. Each direction was worth 1 point, but 1

2 point might be awarded
if there was a non-essential mistake. (In practice, however, this turned out to be an
all-or-nothing matter.)

(b) Recall that J∀x φ(x)K =
∧

u∈V (B)Jφ(u)K. So

p 
 ∀x φ(x) iff p ≤
∧

u∈V (B)

Jφ(u)K

iff ∀u ∈ V (B) (p ≤ Jφ(u)K)

iff ∀u ∈ V (B) (p 
 φ(u)) ,

which was to shown. �

Students received 1
2 point for observing that J∀x φ(x)K =

∧
u∈V (B)Jφ(u)K and 1

2 point for
finishing the proof.

(c) Recall that dom(â) = {x̂ | x ∈ a} and that â takes the value 1 everywhere. So

J∀x ∈ â φ(x)K =
∧

u∈dom â

(â(u)⇒ Jφ(u)K) =
∧
x∈a

(1⇒ Jφ(x̂)K) =
∧
x∈a

Jφ(x̂)K.

We can now proceed as in the previous part. �

Students received 1
2 point for observing that J∀x ∈ â φ(x)K =

∧
x∈aJφ(x̂)K and 1

2 point
for finishing the proof or noticing it to be analogous to the previous part.
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(d) Suppose that JσK 6= 1. Then J¬σK 6= 0, so there is a p ∈ P such that p 
 ¬σ, by
property (iv) of the hand-out. In particular, we have p 1 σ by property (vi) from the
hand-out. So JσK 6= 1 implies that ∃p ∈ P p 1 σ, and the statement we had to prove
follows. �

Students received 1
2 point for the strategy of applying property (vi) / the density of P to

¬σ / JσK∗ and 1
2 point for finishing the proof.
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