Seminar on Set Theory

Hand-in exercise 7 November 6, 2015

Exercise 1.

(a) Suppose $p, q \in C(x, y)$ and $q \not\supseteq p$, so there exists an element $(a, b) \in p$ such that $(a, b) \notin q$. Now suppose that there is an element $c \in y \setminus \{b\}$ such that $(a, c) \in q$, then choose p' = q. If such an element c does not exist, choose an element $c \in y \setminus \{b\}$ at random, which is always possible because y contains at least two elements, and define $p' = q \cup \{(a, c)\}$. Now suppose that there is some element $r \in C(x, y)$ such that $r \supseteq p$ and $r \supseteq p'$, then $(a, b) \in r$ and $(a, c) \in r$, but $b \neq c$, so r is not well-defined. So such an r cannot exist, so $\neg \text{Comp}(p, p')$, and therefore we find that $\forall p, q \in C(x, y)(q \supseteq p \rightarrow \exists p' \supseteq q \neg \text{Comp}(p, p'))$.

This exercise was worth 2 points. Students lost 1 point if they failed to notice the two different cases. Students lost $\frac{1}{2}$ point if they didn't mention the fact that y contains at least two elements where it is needed.

(b) First, we show that the image of N is in $\operatorname{RO}(y^x)$. Since the topology on y is the discrete topology we know that $\{\{a\} \mid a \in y\}$ is a basis for y, and that all these sets are clopen. Now define for all $x_0 \in x, y_0 \in y$ the collection $S(x_0, y_0) := \{f \in y^x \mid f(x_0) = y_0\}$. Then $\{S(x_0, y_0) \mid x_0 \in x, y_0 \in y\}$ is a subbasis for the product topology on y^x , and it consists of clopen sets. This means that the collection of all finite non-empty intersections of elements of $\{S(x_0, y_0) \mid x_0 \in x, y_0 \in y\}$ is a basis for the product topology on y^x . For any set $\{S(x_0, y_0), ..., S(x_n, y_n)\}$ with nonempty intersection, define the function $p \in C(x, y)$ by $p(x_i) = y_i$ for $0 \le i \le n$. Then $S(x_0, y_0) \cap ... \cap S(x_n, y_n) = \{f \in y^x \mid p \subseteq f\} = N(p)$. So the N(p) are a basis for the product topology on y^x . We also see that N(p) is a finite intersection of clopen sets, therefore N(p) is itself clopen. In particular, the N(p)are contained in $\operatorname{RO}(y^x)$.

Next, we show that $\langle \operatorname{RO}(y^x), N \rangle$ is a Boolean completion of C(x, y). Since y^x is a topological space we know from the first hand-in exercise that $\operatorname{RO}(y^x)$ is a complete Boolean algebra. So we have to prove that N is an order-isomorphism of C(x, y) onto a dense subset of $\operatorname{RO}(y^x)$. We will first show that N is an injective map. Suppose that $p, q \in C(x, y)$ and N(p) = N(q). Then $p \in N(q)$ so $q \subseteq p$, and $q \in N(p)$ so $p \subseteq q$. Because $(C(x, y), \supseteq)$ is a poset we find that p = q. So N is indeed injective, and in particular, N is a bijective map onto its image.

Now we show that N is an order-isomorphism. Suppose that $p, q \in C(x, y)$ and $p \leq q$, so $p \supseteq q$. Then if $f \in N(p)$ we see that $q \subseteq p \subseteq f$, so $f \in N(q)$. This means that $N(p) \subseteq N(q)$, so $N(p) \leq N(q)$. So N is order-preserving. On the other hand, if $N(p) \leq N(q)$, then $p \in N(p) \subseteq N(q)$, whence $p \supseteq q$. But this means precisely that $p \leq q$, so N is order-reflecting as well.

The last thing we have to show is that the image $\{N(p) \mid p \in C(x, y)\}$ of N is dense in $\operatorname{RO}(y^x)$. We notice again that $p \in N(p)$ for every $p \in C(x, y)$, so $\emptyset \neq N(p)$ for all $p \in C(x, y)$. Suppose $X \neq \emptyset$ is some element of $\operatorname{RO}(y^x)$. Then in particular, X is open, so because the N(p) form a basis for the topology on y^x , the set X can be written as a union of sets of the form N(p). This means there must be an N(p) such that $N(p) \subseteq X$. So the N(p) are dense in $\operatorname{RO}(y^x)$.

This completes the proof that $(\operatorname{RO}(y^x), N)$ is a Boolean completion of C(x, y).

The first part was worth one point, which could only be obtained with a clear explanation of the topological ideas behind it. The second part was worth 2 points, and contained injectivity, order-preserving, order-reflecting, mentioning that $\operatorname{RO}(y^x)$ is a complete Boolean algebra and showing that the image of N is dense in it. Showing that the image of N is dense was worth 1 point, students lost $\frac{1}{2}$ point if they forgot to show that \emptyset is not in the image of N. The other parts where worth 1 point together. Students lost $\frac{1}{2}$ if they forgot one or made a mistake in one of them.

Exercise 2. As always, we drop the superscript from $\llbracket \cdot \rrbracket^B$.

(a) First, suppose that $p \Vdash \sigma \to \tau$ and let $q \leq p$ such that $q \Vdash \sigma$. Then we have $q \leq p \leq [\![\sigma \to \tau]\!] = [\![\sigma]\!] \Rightarrow [\![\tau]\!]$ and $q \leq [\![\sigma]\!]$, whence $q \leq ([\![\sigma]\!] \Rightarrow [\![\tau]\!]) \land [\![\sigma]\!] \leq [\![\tau]\!]$. This means that $q \Vdash \tau$, which establishes the first direction.

Now suppose that for any $q \leq p$ such that $q \Vdash \sigma$, we also have $q \Vdash \tau$. Then for any such q, we also have $q \nvDash \neg \tau$ by property (vi) of the hand-out. That is,

$$\forall q \leq p \ (q \Vdash \sigma \to q \nvDash \neg \tau).$$

This is equivalent to

 $\neg \exists q \leq p \ (q \Vdash \sigma \text{ and } q \Vdash \neg \tau).$

By properties (iii) and (v) from the hand-out, this means that $p \Vdash \neg(\sigma \land \neg \tau)$. But $\sigma \to \tau$ is equivalent to $\neg(\sigma \land \neg \tau)$, which means that $\llbracket \sigma \to \tau \rrbracket = \llbracket \neg(\sigma \land \neg \tau) \rrbracket$. We may conclude that $p \Vdash \sigma \to \tau$, which establishes the other direction.

It was also possible to use the definition of $[\![\sigma \to \tau]\!] = [\![\sigma]\!] \Rightarrow [\![\tau]\!]$ directly, as many students in fact did. Each direction was worth 1 point, but $\frac{1}{2}$ point might be awarded if there was a non-essential mistake. (In practice, however, this turned out to be an all-or-nothing matter.)

(b) Recall that $\llbracket \forall x \ \phi(x) \rrbracket = \bigwedge_{u \in V^{(B)}} \llbracket \phi(u) \rrbracket$. So

$$p \Vdash \forall x \ \phi(x) \qquad \text{iff} \qquad p \leq \bigwedge_{u \in V^{(B)}} \llbracket \phi(u) \rrbracket$$
$$\text{iff} \qquad \forall u \in V^{(B)} \ (p \leq \llbracket \phi(u) \rrbracket)$$
$$\text{iff} \qquad \forall u \in V^{(B)} \ (p \Vdash \phi(u)) \,,$$

 \square

which was to shown.

Students received $\frac{1}{2}$ point for observing that $[\forall x \ \phi(x)] = \bigwedge_{u \in V^{(B)}} [\phi(u)]$ and $\frac{1}{2}$ point for finishing the proof.

(c) Recall that dom $(\hat{a}) = \{\hat{x} \mid x \in a\}$ and that \hat{a} takes the value 1 everywhere. So

$$\llbracket \forall x \in \hat{a} \ \phi(x) \rrbracket = \bigwedge_{u \in \operatorname{dom} \hat{a}} (\hat{a}(u) \Rightarrow \llbracket \phi(u) \rrbracket) = \bigwedge_{x \in a} (1 \Rightarrow \llbracket \phi(\hat{x}) \rrbracket) = \bigwedge_{x \in a} \llbracket \phi(\hat{x}) \rrbracket.$$

We can now proceed as in the previous part.

Students received $\frac{1}{2}$ point for observing that $[\forall x \in \hat{a} \ \phi(x)] = \bigwedge_{x \in a} [\phi(\hat{x})]$ and $\frac{1}{2}$ point for finishing the proof or noticing it to be analogous to the previous part.

(d) Suppose that $\llbracket \sigma \rrbracket \neq 1$. Then $\llbracket \neg \sigma \rrbracket \neq 0$, so there is a $p \in P$ such that $p \Vdash \neg \sigma$, by property (iv) of the hand-out. In particular, we have $p \nvDash \sigma$ by property (vi) from the hand-out. So $\llbracket \sigma \rrbracket \neq 1$ implies that $\exists p \in P \ p \nvDash \sigma$, and the statement we had to prove follows.

Students received $\frac{1}{2}$ point for the strategy of applying property (vi) / the density of P to $\neg \sigma / [\sigma]^*$ and $\frac{1}{2}$ point for finishing the proof.