Seminar on Set Theory

Hand-in exercise 7

November 6, 2015

Exercise 1.

(a) Suppose $p, q \in C(x, y)$ and $q \nsupseteq p$, so there exists an element $(a, b) \in p$ such that $(a, b) \notin q$. Now suppose that there is an element $c \in y \backslash\{b\}$ such that $(a, c) \in q$, then choose $p^{\prime}=q$. If such an element c does not exist, choose an element $c \in y \backslash\{b\}$ at random, which is always possible because y contains at least two elements, and define $p^{\prime}=q \cup\{(a, c)\}$. Now suppose that there is some element $r \in C(x, y)$ such that $r \supseteq p$ and $r \supseteq p^{\prime}$, then $(a, b) \in r$ and $(a, c) \in r$, but $b \neq c$, so r is not well-defined. So such an r cannot exist, so $\neg \operatorname{Comp}\left(p, p^{\prime}\right)$, and therefore we find that $\forall p, q \in C(x, y)(q \nsupseteq p \rightarrow$ $\left.\exists p^{\prime} \supseteq q \neg \operatorname{Comp}\left(p, p^{\prime}\right)\right)$.
This exercise was worth 2 points. Students lost 1 point if they failed to notice the two different cases. Students lost $\frac{1}{2}$ point if they didn't mention the fact that y contains at least two elements where it is needed.
(b) First, we show that the image of N is in $\operatorname{RO}\left(y^{x}\right)$. Since the topology on y is the discrete topology we know that $\{\{a\} \mid a \in y\}$ is a basis for y, and that all these sets are clopen. Now define for all $x_{0} \in x, y_{0} \in y$ the collection $S\left(x_{0}, y_{0}\right):=\left\{f \in y^{x} \mid f\left(x_{0}\right)=y_{0}\right\}$. Then $\left\{S\left(x_{0}, y_{0}\right) \mid x_{0} \in x, y_{0} \in y\right\}$ is a subbasis for the product topology on y^{x}, and it consists of clopen sets. This means that the collection of all finite non-empty intersections of elements of $\left\{S\left(x_{0}, y_{0}\right) \mid x_{0} \in x, y_{0} \in y\right\}$ is a basis for the product topology on y^{x}. For any set $\left\{S\left(x_{0}, y_{0}\right), \ldots, S\left(x_{n}, y_{n}\right)\right\}$ with nonempty intersection, define the function $p \in C(x, y)$ by $p\left(x_{i}\right)=y_{i}$ for $0 \leq i \leq n$. Then $S\left(x_{0}, y_{0}\right) \cap \ldots \cap S\left(x_{n}, y_{n}\right)=\left\{f \in y^{x} \mid p \subseteq f\right\}=N(p)$. So the $N(p)$ are a basis for the product topology on y^{x}. We also see that $N(p)$ is a finite intersection of clopen sets, therefore $N(p)$ is itself clopen. In particular, the $N(p)$ are contained in $\mathrm{RO}\left(y^{x}\right)$.
Next, we show that $\left\langle\operatorname{RO}\left(y^{x}\right), N\right\rangle$ is a Boolean completion of $C(x, y)$. Since y^{x} is a topological space we know from the first hand-in exercise that $\mathrm{RO}\left(y^{x}\right)$ is a complete Boolean algebra. So we have to prove that N is an order-isomorphism of $C(x, y)$ onto a dense subset of $\mathrm{RO}\left(y^{x}\right)$. We will first show that N is an injective map. Suppose that $p, q \in C(x, y)$ and $N(p)=N(q)$. Then $p \in N(q)$ so $q \subseteq p$, and $q \in N(p)$ so $p \subseteq q$. Because $(C(x, y), \supseteq)$ is a poset we find that $p=q$. So N is indeed injective, and in particular, N is a bijective map onto its image.
Now we show that N is an order-isomorphism. Suppose that $p, q \in C(x, y)$ and $p \leq q$, so $p \supseteq q$. Then if $f \in N(p)$ we see that $q \subseteq p \subseteq f$, so $f \in N(q)$. This means that $N(p) \subseteq N(q)$, so $N(p) \leq N(q)$. So N is order-preserving. On the other hand, if $N(p) \leq N(q)$, then $p \in N(p) \subseteq N(q)$, whence $p \supseteq q$. But this means precisely that $p \leq q$, so N is order-reflecting as well.
The last thing we have to show is that the image $\{N(p) \mid p \in C(x, y)\}$ of N is dense in $\mathrm{RO}\left(y^{x}\right)$. We notice again that $p \in N(p)$ for every $p \in C(x, y)$, so $\emptyset \neq N(p)$ for all $p \in C(x, y)$. Suppose $X \neq \emptyset$ is some element of $\mathrm{RO}\left(y^{x}\right)$. Then in particular, X is open, so because the $N(p)$ form a basis for the topology on y^{x}, the set X can be written as a
union of sets of the form $N(p)$. This means there must be an $N(p)$ such that $N(p) \subseteq X$. So the $N(p)$ are dense in $\mathrm{RO}\left(y^{x}\right)$.
This completes the proof that $\left\langle\mathrm{RO}\left(y^{x}\right), N\right\rangle$ is a Boolean completion of $C(x, y)$.
The first part was worth one point, which could only be obtained with a clear explanation of the topological ideas behind it. The second part was worth 2 points, and contained injectivity, order-preserving, order-reflecting, mentioning that $\mathrm{RO}\left(y^{x}\right)$ is a complete Boolean algebra and showing that the image of N is dense in it. Showing that the image of N is dense was worth 1 point, students lost $\frac{1}{2}$ point if they forgot to show that \emptyset is not in the image of N. The other parts where worth 1 point together. Students lost $\frac{1}{2}$ if they forgot one or made a mistake in one of them.
Exercise 2. As always, we drop the superscript from $\llbracket \cdot \rrbracket^{B}$.
(a) First, suppose that $p \Vdash \sigma \rightarrow \tau$ and let $q \leq p$ such that $q \Vdash \sigma$. Then we have $q \leq p \leq$ $\llbracket \sigma \rightarrow \tau \rrbracket=\llbracket \sigma \rrbracket \Rightarrow \llbracket \tau \rrbracket$ and $q \leq \llbracket \sigma \rrbracket$, whence $q \leq(\llbracket \sigma \rrbracket \Rightarrow \llbracket \tau \rrbracket) \wedge \llbracket \sigma \rrbracket \leq \llbracket \tau \rrbracket$. This means that $q \Vdash \tau$, which establishes the first direction.
Now suppose that for any $q \leq p$ such that $q \Vdash \sigma$, we also have $q \Vdash \tau$. Then for any such q, we also have $q \nVdash \neg \tau$ by property (vi) of the hand-out. That is,

$$
\forall q \leq p(q \Vdash \sigma \rightarrow q \nVdash \neg \tau) .
$$

This is equivalent to

$$
\neg \exists q \leq p(q \Vdash \sigma \text { and } q \Vdash \neg \tau) .
$$

By properties (iii) and (v) from the hand-out, this means that $p \Vdash \neg(\sigma \wedge \neg \tau)$. But $\sigma \rightarrow \tau$ is equivalent to $\neg(\sigma \wedge \neg \tau)$, which means that $\llbracket \sigma \rightarrow \tau \rrbracket=\llbracket \neg(\sigma \wedge \neg \tau) \rrbracket$. We may conclude that $p \Vdash \sigma \rightarrow \tau$, which establishes the other direction.
It was also possible to use the definition of $\llbracket \sigma \rightarrow \tau \rrbracket=\llbracket \sigma \rrbracket \Rightarrow \llbracket \tau \rrbracket$ directly, as many students in fact did. Each direction was worth 1 point, but $\frac{1}{2}$ point might be awarded if there was a non-essential mistake. (In practice, however, this turned out to be an all-or-nothing matter.)
(b) Recall that $\llbracket \forall x \phi(x) \rrbracket=\bigwedge_{u \in V^{(B)}} \llbracket \phi(u) \rrbracket$. So

$$
\begin{array}{lcl}
p \Vdash \forall x \phi(x) & \text { iff } & p \leq \bigwedge_{u \in V^{(B)}} \llbracket \phi(u) \rrbracket \\
& \text { iff } & \forall u \in V^{(B)}(p \leq \llbracket \phi(u) \rrbracket) \\
& \text { iff } & \forall u \in V^{(B)}(p \Vdash \phi(u)),
\end{array}
$$

which was to shown.
Students received $\frac{1}{2}$ point for observing that $\llbracket \forall x \phi(x) \rrbracket=\bigwedge_{u \in V^{(B)}} \llbracket \phi(u) \rrbracket$ and $\frac{1}{2}$ point for finishing the proof.
(c) Recall that $\operatorname{dom}(\hat{a})=\{\hat{x} \mid x \in a\}$ and that \hat{a} takes the value 1 everywhere. So

$$
\llbracket \forall x \in \hat{a} \phi(x) \rrbracket=\bigwedge_{u \in \operatorname{dom} \hat{a}}(\hat{a}(u) \Rightarrow \llbracket \phi(u) \rrbracket)=\bigwedge_{x \in a}(1 \Rightarrow \llbracket \phi(\hat{x}) \rrbracket)=\bigwedge_{x \in a} \llbracket \phi(\hat{x}) \rrbracket .
$$

We can now proceed as in the previous part.
Students received $\frac{1}{2}$ point for observing that $\llbracket \forall x \in \hat{a} \phi(x) \rrbracket=\bigwedge_{x \in a} \llbracket \phi(\hat{x}) \rrbracket$ and $\frac{1}{2}$ point for finishing the proof or noticing it to be analogous to the previous part.
(d) Suppose that $\llbracket \sigma \rrbracket \neq 1$. Then $\llbracket \neg \sigma \rrbracket \neq 0$, so there is a $p \in P$ such that $p \Vdash \neg \sigma$, by property (iv) of the hand-out. In particular, we have $p \nVdash \sigma$ by property (vi) from the hand-out. So $\llbracket \sigma \rrbracket \neq 1$ implies that $\exists p \in P p \nVdash \sigma$, and the statement we had to prove follows.

Students received $\frac{1}{2}$ point for the strategy of applying property (vi) / the density of P to $\neg \sigma / \llbracket \sigma \rrbracket^{*}$ and $\frac{1}{2}$ point for finishing the proof.

