Seminar on Set Theory

Solutions to exercise 8
November 27, 2015

Exercise 1.

Let us call the family in the exercise \mathcal{F}. Let $\mathcal{P}_{\text {fin }} I$ denote the set of finite subsets of I. For $S \in \mathcal{F}$, let $I_{S, 1}$ and $I_{S, 0}$ be those finite subsets of I such that $f \in 2^{I}$ is an element of S if and only if $f(i)=1$ for all $i \in I_{S, 1}$ and $f(i)=0$ for all $i \in I_{S, 0}$.

Define a map $f: \mathcal{F} \rightarrow \mathcal{P}_{\text {fin }} I \times \mathcal{P}_{\text {fin }} I$ by $S \mapsto\left(I_{S, 1}, I_{S, 0}\right)$. This map is clearly injective, so we have $|\mathcal{F}| \leq\left|\mathcal{P}_{\text {fin }} I \times \mathcal{P}_{\text {fin }} I\right|=\left|\mathcal{P}_{\text {fin }} I\right| \times\left|\mathcal{P}_{\text {fin }} I\right|=\left|\mathcal{P}_{\text {fin }} I\right|$, by the hint. (Note that we can use the hint, because $\mathcal{P}_{\text {fin }} I$ contains all singletons, so $\left|\mathcal{P}_{\text {fin }} I\right| \geq|I|$ and I is infinite.)

Furthermore, we have a natural injection from $\mathcal{P}_{\text {fin }} I$ into $\bigcup_{n \in \omega} I^{n}$. Hence, $\left|\mathcal{P}_{\text {fin }} I\right| \leq\left|\bigcup_{n \in \omega} I^{n}\right|=\sum_{n=1}^{\infty}\left|I^{n}\right|=\aleph_{0} \times \aleph_{\alpha}=\aleph_{\alpha}$ by the hint and induction.

Thus, $|\mathcal{F}| \leq\left|\mathcal{P}_{\text {fin }} I\right| \leq \aleph_{\alpha}$. But the map $g: I \rightarrow \mathcal{F}$ defined by $i \mapsto\{f \in$ $\left.2^{I} \mid f(i)=1\right\}$ is clearly an injection, so that $\aleph_{\alpha}=|I| \leq|\mathcal{F}|$.

By the Cantor-Schröder-Bernstein Theorem, $|\mathcal{F}|=\aleph_{\alpha}$.

Exercise 2.

(a) By Lemma 1.52 (with $u=\mathcal{P} \hat{\kappa} \in V^{(B)}$), we get:

$$
\left.V^{(B)} \models|\mathcal{P} \hat{\kappa}| \leq \mid \widehat{\operatorname{dom}(\mathcal{P}} \hat{\kappa}\right) \mid .
$$

Note: $|\operatorname{dom}(\mathcal{P} \hat{\kappa})|=\left|B^{\operatorname{dom}(\hat{\kappa})}\right|=|B|^{|\operatorname{dom}(\hat{\kappa})|}=\left|\lambda^{\kappa}\right|$, because $\operatorname{dom}(\hat{\kappa})=$ $\{\hat{\alpha} \mid \alpha<\kappa\}$ and because the hat-map is injective.
By 1.48 , we get: $\left.V^{(B)}|=| \widehat{\operatorname{dom}(\mathcal{P} \hat{\kappa}}\right)\left|=\left|\widehat{\lambda^{\kappa}}\right|\right.$, so

$$
V^{(B)} \models|\mathcal{P} \hat{\kappa}| \leq\left|\widehat{\lambda^{\kappa}}\right|,
$$

as desired.
(b) First of all, notice that $\left|\omega \times \omega_{2}\right|=\aleph_{2}$. By Corollary 2.11, we find using the GCH,

$$
\aleph_{2} \leq|B| \leq \aleph_{2}^{\aleph_{0}}=\left(2^{\aleph_{1}}\right)^{\aleph_{0}}=2^{\aleph_{1} \times \aleph_{0}}=2^{\aleph_{1}}=\aleph_{2}
$$

Hence, $|B|=\aleph_{2}$. Part (a) yields: $V^{(B)} \models|\mathcal{P} \hat{\kappa}| \leq\left|\widehat{\aleph_{2}^{\kappa}}\right|$. If we take $\kappa=\aleph_{1}$, then $V^{(B)} \models\left|\mathcal{P} \hat{\aleph}_{1}\right| \leq\left|\widehat{\aleph_{2}^{\aleph_{1}}}\right|$.
Since B satisfies ccc, we have $V^{(B)} \models\left|\mathcal{P} \hat{\aleph}_{1}\right|=\left|\mathcal{P} \aleph_{\hat{1}}\right|$, but the formula $x=1$ is restricted, so $V^{(B)}\left|=\left|\mathcal{P} \widehat{\aleph}_{1}\right|=\left|\mathcal{P} \aleph_{1}\right|=2^{\aleph_{1}}\right.$.
Furthermore, assuming GCH, we find: $\aleph_{2}^{\aleph_{1}}=\left(2^{\aleph_{1}}\right)^{\aleph_{1}}=2^{\aleph_{1}}=\aleph_{2}$. So by 1.48, we have $V^{(B)} \models\left|\widehat{\aleph_{2}^{\aleph_{1}}}\right|=\left|\widehat{\aleph}_{2}\right|$. But the formula $x=2$ is restricted and B satisfies ccc, so $V^{(B)}\left|=\left|\widehat{\aleph_{2}^{\aleph_{1}}}\right|=\aleph_{2}\right.$.
Hence, $V^{(B)} \models 2^{\aleph_{1}} \leq \aleph_{2}$, as we wished to show.
(c) By the given property, $V^{(B)} \models \forall \kappa \geq \hat{\lambda}\left(2^{\kappa}=\kappa^{+}\right)$. In part (b), we saw that $\lambda=\aleph_{2}$. Thus, $V^{(B)} \mid=\forall \kappa \geq \aleph_{2}\left(2^{\kappa}=\kappa^{+}\right)$(because B satisfies ccc and the formula $x=2$ is restricted, we have $V^{(B)} \models \hat{\aleph}_{2}=\aleph_{2}$).
In part (b) we showed that $V^{(B)} \models 2^{\aleph_{1}}=\aleph_{2}$. Hence,

$$
V^{(B)} \models \forall \kappa \geq \aleph_{1}\left(2^{\aleph_{1}}=\kappa^{+}\right) .
$$

When we combine this with Theorem 2.12, we obtain $V^{(B)} \vDash 2^{\aleph_{0}}=\aleph_{2}$ and hence the desired result.
(d) Let $T^{\prime}=\mathrm{ZFC}+\mathrm{GCH}$ and $T=\mathrm{ZFC}+2^{\aleph_{0}}=\aleph_{2}+\forall \kappa \geq \aleph_{1}\left(2^{\kappa}=\kappa^{+}\right)$. We know that $\operatorname{Consis}(\mathrm{ZF}) \rightarrow \operatorname{Consis}\left(T^{\prime}\right)$.
Moreover, T^{\prime} proves that B is a complete Boolean algebra and T^{\prime} proves $\llbracket \sigma \rrbracket^{B}=1_{B}$ for every axiom σ of ZFC, as we have seen before. Furthermore, we have just shown that T^{\prime} proves $\llbracket 2^{\aleph_{0}}=\aleph_{1} \rrbracket^{B}=1_{B}$ and T^{\prime} proves $\llbracket \forall \kappa \geq \aleph_{1}\left(2^{\kappa}=\kappa^{+}\right) \rrbracket^{B}=1_{B}$.

We may conclude by Theorem 1.19 that Consis(ZF) \rightarrow Consis(ZFC + $\left.2^{\aleph_{0}}=\aleph_{1}+\forall \kappa \geq \aleph_{1}\left(2^{\kappa}=\kappa^{+}\right)\right)$.

