Seminar on Set Theory
 Model solution exercise 8

December 1, 2015

3 Some details about an action on $V^{(B)}$

In this exercise you will prove some omitted details from the proof of Theorem 3.3. Define the map $\langle g, u\rangle \mapsto g u: G \times V^{(B)} \rightarrow V^{(B)}$ by recursion on the well-founded relation $y \in \operatorname{dom}(x)$ via

$$
g u=\{\langle g x, g \cdot u(x)\rangle: x \in \operatorname{dom}(u)\} .
$$

a)

Prove that

$$
g \cdot \llbracket u \in v \rrbracket=\llbracket g u \in g v \rrbracket
$$

and

$$
g \cdot \llbracket u=v \rrbracket=\llbracket g u=g v \rrbracket .
$$

(2 pt.)

Solution:

Use induction on the well-founded relation defined on page 23. Assume that $g \cdot \llbracket x \in y \rrbracket=\llbracket g x \in g y \rrbracket$ and $g \cdot \llbracket x=y \rrbracket=\llbracket g x=g y \rrbracket$ for all $\langle x, y\rangle<\langle u, v\rangle$. Then

$$
\begin{aligned}
\llbracket g u \in g v \rrbracket & =\bigvee_{x \in \operatorname{dom}(g v)}(g v(x) \wedge \llbracket g u=x \rrbracket) \\
& =\bigvee_{y \in \operatorname{dom}(v)}(g v(g y) \wedge \llbracket g u=g y \rrbracket)
\end{aligned}
$$

$$
(\text { by Thm } 3.3(\mathrm{i}) \text { and } \mathrm{IH})=\bigvee_{y \in \operatorname{dom}(v)}(g \cdot v(y) \wedge g \cdot \llbracket u=y \rrbracket)
$$

$$
=g \cdot \bigvee_{y \in \operatorname{dom}(v)}(v(y) \wedge \llbracket u=y \rrbracket)
$$

$$
=g \cdot \llbracket u \in v \rrbracket .
$$

Also we have that

$$
\begin{aligned}
\llbracket g u=g v \rrbracket & =\bigwedge_{x^{\prime} \in \operatorname{dom}(g u)}\left(g u\left(x^{\prime}\right) \Rightarrow \llbracket x^{\prime} \in g v \rrbracket\right) \wedge \bigwedge_{y^{\prime} \in \operatorname{dom}(g v)}\left(g v\left(y^{\prime}\right) \Rightarrow \llbracket y^{\prime} \in g u \rrbracket\right) \\
& =\bigwedge_{x \in \operatorname{dom}(u)}(g u(g x) \Rightarrow \llbracket g x \in g v \rrbracket) \wedge \bigwedge_{y \in \operatorname{dom}(v)}(g v(g y) \Rightarrow \llbracket g y \in g u \rrbracket)
\end{aligned}
$$

$($ by Thm $3.3(\mathrm{i})$ and IH$)=\bigwedge_{x \in \operatorname{dom}(u)}(g \cdot u(x) \Rightarrow g \cdot \llbracket x \in v \rrbracket) \wedge \bigwedge_{y \in \operatorname{dom}(v)}(g \cdot v(y) \Rightarrow g \cdot \llbracket y \in u \rrbracket)$

$$
=g \cdot\left(\bigwedge_{x \in \operatorname{dom}(u)}(u(x) \Rightarrow \llbracket x \in v \rrbracket) \wedge \bigwedge_{y \in \operatorname{dom}(v)}(v(y) \Rightarrow \llbracket y \in u \rrbracket)\right)
$$

$$
=g \cdot \llbracket u=v \rrbracket .
$$

b)

Prove Theorem 3.3 (ii): $g \hat{v}=\hat{v}$ for any $v \in V$. (3pt.)

Solution:

By induction on the well-founded relation \in. Suppose $g \hat{y}=\hat{y}$ for all $y \in v$.
Then

$$
\begin{array}{r}
g \hat{v}=\{\langle g x, g \cdot \hat{v}(x)\rangle \mid x \in \operatorname{dom}(\hat{v})\} \\
=\{\langle g \hat{y}, g \cdot \hat{v}(\hat{y})\rangle \mid y \in v\} \\
=\{\langle g \hat{y}, g \cdot 1\rangle \mid y \in v\} \\
=\{\langle\hat{y}, 1\rangle \mid y \in v\} \\
=\hat{v} .
\end{array}
$$

