Seminar on Set Theory

Model solution 9

Exercise 1

Exercise 1a

(a) It suffices to show that $g(x \wedge y) = g(x) \wedge g(y)$ and $g(x^*) = g(x)^*$ for all $x, y \in B'$. So let $x, y \in B$ be arbitrary. Since h is a bijection, we have

$$g(x \wedge y) = g(x) \wedge g(y) \longleftrightarrow h(g(x \wedge y)) = h(g(x) \wedge g(y))$$

Now $h(g(x \land y)) = x \land y$ and $h(g(x) \land g(y)) = h(g(x)) \land h(g(y)) = x \land y$, so indeed $g(x \land y) = g(x) \land g(y)$. Similarly

$$g(x^*) = g(x)^* \longleftrightarrow h(g(x^*)) = h(g(x)^*).$$

So since $h(g(x^*)) = x^*$ and $h(g(x)^*) = h(g(x))^* = x^*$, we conclude that $g(x^*) = g(x)^*$. Hence, g is a homomorphism. (1.5 points)

Exercise 1b

Note that π and π^{-1} are both order preserving, as they are homomorphisms. Let $X \subseteq B$ and suppose that $\bigvee X$ exists in B. Since $\bigvee X \ge x$ for all $x \in X$, we have $\pi(\bigvee X) \ge \pi(x)$ for all $x \in X$, so $\pi(\bigvee X)$ is an upper bound for $\{\pi(x) \mid x \in X\}$. Suppose that $y \in B$ is also an upper bound for $\{\pi(x) \mid x \in X\}$. Then $y \ge \pi(x)$ for all $x \in X$, so $\pi^{-1}(y) \ge x$ for all $x \in X$. It follows that $\pi^{-1}(y)$ is an upper bound for X, so $\pi^{-1}(y) \ge \bigvee X$. This implies $y \ge \pi(\bigvee X)$. We conclude that $\pi(\bigvee X)$ is the least upper bound for $\{\pi(x) \mid x \in X\}$, so $\pi(\bigvee X) = \bigvee \{\pi(x) \mid x \in X\}$. Hence, π is a complete homomorphism. (1.5 points)

Exercise 1c

Suppose that B is homogeneous and let $x \neq 0, y \neq 0$ be in B. If we let $\pi' \in Aut(B)$, then

$$\pi'\left(\bigvee\{\pi(x)\mid \pi\in \operatorname{Aut}(B)\}\right) = \bigvee\{\pi'(\pi(x))\mid \pi\in \operatorname{Aut}(B)\}$$

by part **b**. Furthermore

$$\bigvee \{ \pi'(\pi(x)) \mid \pi \in \operatorname{Aut}(B) \} = \bigvee \{ \pi(x) \mid \pi \in \operatorname{Aut}(B) \}$$

since $\pi'\pi$ runs through Aut(B) as π runs through Aut(B). This means that $\bigvee \{\pi(x) \mid \pi \in \text{Aut}(B)\}$ is invariant, so it must have value 0 or 1, by homogeneity of B. Since $\bigvee \{\pi(x) \mid \pi \in \text{Aut}(B)\} \ge \text{id}(x) = x$ and $x \ne 0$, it follows that $\bigvee \{\pi(x) \mid \pi \in \text{Aut}(B)\} = 1$. Hence

$$y = y \land \bigvee \{ \pi(x) \mid \pi \in \operatorname{Aut}(B) \} = \bigvee \{ y \land \pi(x) \mid \pi \in \operatorname{Aut}(B) \}.$$

So since $y \neq 0$, there must be $\pi \in \operatorname{Aut}(B)$ such that $y \wedge \pi(x) \neq 0$.

Conversely, suppose that B is not homogeneous. Then there exists an invariant element $y \in B$, with $y \neq 0$ and $y \neq 1$. But then $y^* \neq 0$, so if we take $x = y^*$, then we have found nonzero $x, y \in B$ such that

$$x \wedge \pi(y) = y^* \wedge \pi(y) = y^* \wedge y = 0,$$

for all $\pi \in Aut(B)$. (2 points)

Exercise 2

Exercise 2a

This is shown by proving $V_{\alpha}^{(\Gamma)} \subseteq V_{\alpha}^{(B)}$ for any ordinal α . For α an ordinal, we can show $V_{\alpha}^{(\Gamma)} \subseteq V_{\alpha}^{(B)}$ by induction. Assume for all $\beta < \alpha$ we know $V_{\beta}^{(\Gamma)} \subseteq V_{\beta}^{(B)}$. Now let $x \in V_{\beta}^{(\Gamma)}$, then $\operatorname{Fun}(x) \wedge \operatorname{ran}(x) \subseteq B \wedge \exists \beta < \alpha \operatorname{dom}(x) \subseteq V_{\beta}^{(\Gamma)}$, so by the induction hypothesis $\operatorname{Fun}(x) \wedge \operatorname{ran}(x) \subseteq B \wedge \exists \beta < \alpha \operatorname{dom}(x) \subseteq V_{\beta}^{(B)}$, so $x \in V_{\alpha}^{(B)}$. So by induction $V_{\alpha}^{(\Gamma)} \subseteq V_{\alpha}^{(B)}$ for any ordinal α , so $V^{(B)} \subseteq V^{(\Gamma)}$. (.5 points for a correct answer)

Exercise 2b

Let $u = \{\langle \emptyset, r \rangle\} \in V^{(B)}$. Now for $g \in \operatorname{stab}(u)$ we know $\{\langle \emptyset, r \rangle\} = u = gu = \{\langle g\emptyset, gr \rangle\} = \{\langle \emptyset, gr \rangle\}$, i.e. gr = r, so $\operatorname{stab}(u) \subseteq \operatorname{stab}(r)$. But as $\operatorname{stab}(r) \notin \Gamma$, $\operatorname{stab}(u) \notin \Gamma$ (because Γ is a filter of subgroups), so $u \notin V^{(\Gamma)}$. So $V^{(\Gamma)} \neq V^{(B)}$.(.5 points for a correct answer)

Exercise 2c

Note that if B' obeys $a = \bigcap_{b' \in B'} \operatorname{stab}(b') \in \Gamma$ and it is maximal under this property, then $B' = \{b \in B | a \subseteq \operatorname{stab}(b)\}$. For let $b \in B$ such that $a \subseteq \operatorname{stab}(b)$. Then $\bigcap_{b' \in B'} \operatorname{stab}(b') \cap \operatorname{stab}(b) \in \Gamma(\operatorname{because} \Gamma \text{ is a filter of subgroups})$, so by maximality of B' we know $b \in B'$. So $B' \subseteq \{b \in B | a \subseteq \operatorname{stab}(b)\}$. Now note that for any $b \in B'$ that $a = \bigcap_{b' \in B'} \operatorname{stab}(b') \subseteq \operatorname{stab}(b)$, so $B' = \{b \in B | a \subseteq \operatorname{stab}(b)\}$.

Now we find that for any $x, y \in B'$ that $\operatorname{stab}(x \wedge y) \supseteq \operatorname{stab}(x) \cap \operatorname{stab}(y) \supseteq a(\operatorname{as} \operatorname{if} g \in \operatorname{stab}(x) \cap \operatorname{stab}(y)$, then $g(x \wedge y) = gx \wedge gy = x \wedge y$, so $x \wedge y \in B'$. Similarly $x \vee y, x \Rightarrow y, x^* \in B'$, so B' is a Boolean algebra (as these operations obey the required properties, as they do in B). (note that B' is a complete Boolean algebra by for $X \subseteq B'$, $\operatorname{stab}(\bigvee X) \supseteq \bigcap_{x \in X} \operatorname{stab}(x) \supseteq a$ so $\bigvee X \in B'$, and similarly $\bigwedge X \in B'$). (1 point for proving that B' is a Boolean algebra)

Now we can show for any $u \in V^{(B')}$ that $\operatorname{stab}(u) \supseteq a$ by induction on $V_{\alpha}^{(B')}$. As let α be an ordinal, and for any $\beta < \alpha$ we know that for any $u \in V_{\beta}^{(B')}$ that $\operatorname{stab}(u) \supseteq a$. Now let $u \in V_{\alpha}^{(B')}$. Then $\operatorname{Fun}(u) \wedge \operatorname{ran}(u) \subseteq B' \wedge \exists \beta < \alpha \operatorname{dom}(u) \subseteq V_{\beta}^{(B')}$. So let $g \in a$, then $gu = \{\langle gx, g(u(x)) \rangle | x \in \operatorname{dom}(u) \}$. By the induction hypothesis for any $x \in \operatorname{dom}(u)$ we know that gx = x, and by definition of B' we know that for any $b \in B'$ gb = b, so g(u(x)) = u(x). So $gu = \{\langle x, u(x) \rangle | x \in \operatorname{dom}(u) \} = u$. So $\operatorname{stab}(u) \supseteq a$.

Now by induction on ordinals α we can find that $V_{\alpha}^{(B')} \subseteq V_{\alpha}^{(\Gamma)}$. As let α be an ordinal, and for any $\beta < \alpha$ we know that $V_{\beta}^{(B')} \subseteq V_{\beta}^{(\Gamma)}$. Now if $x \in V_{\alpha}^{(B')}$ then $\operatorname{Fun}(x) \wedge \operatorname{ran}(x) \subseteq B' \wedge \exists \beta < \alpha \operatorname{dom}(x) \subseteq V_{\beta}^{(B')}$. Then by the induction hypothesis(and $B' \subseteq B$) $\operatorname{Fun}(x) \wedge \operatorname{ran}(x) \subseteq B \wedge \exists \beta < \alpha \operatorname{dom}(x) \subseteq V_{\beta}^{(\Gamma)}$, and by the previous part $\operatorname{stab}(x) \supseteq a$ so $\operatorname{stab}(x) \in \Gamma$, so $x \in V_{\alpha}^{(\Gamma)}$. So by induction for any ordinal α we know that $V_{\alpha}^{(B')} \subseteq V_{\alpha}^{(\Gamma)}$, so $V^{(B')} \subseteq V^{(\Gamma)}$. (1 point for correctly using induction)

Exercise 3

Exercise 3a

Let $g \in \operatorname{stab}(u)$. Then

$$dom(gv) = \bigcup \{gdom(y)|y \in dom(u)\}$$

=
$$\bigcup \{dom(gy)|y \in dom(u)\}$$

=
$$\bigcup \{dom(y)|g^{-1}y \in dom(u)\}$$

=
$$\bigcup \{dom(y)|y \in dom(gu)\} = dom(v)$$

using the property that $\operatorname{dom}(gy) = \{gx | x \in \operatorname{dom}(y)\}$ for any $y \in V^{(\Gamma)}$.(.5 points) Now for $x \in \operatorname{dom}(gv)$ we know that:

$$\begin{split} (gv)(x) &= g(v(g^{-1}(x))) \\ &= g[\![\exists y \in u[g^{-1}x \in y]]\!]^{\Gamma} \\ &= [\![\exists y \in gu[gg^{-1}x \in y]]\!]^{\Gamma} \\ &= [\![\exists y \in u[x \in y]]\!]^{\Gamma} = v(x) \end{split}$$

So $g \in \operatorname{stab}(v)$, so this completes the proof. (.5 points)

Exercise 3b

Let $g \in \operatorname{stab}(u)$. Then if $x \in \operatorname{dom}(gv)$, then $gx \in B^{\operatorname{dom}(u)} \cap V^{(\Gamma)}$, so in other words $gx \in V^{(\Gamma)}$ and $\operatorname{dom}(gx) = \operatorname{dom}(u)$. But if $gx \in V^{(\Gamma)}$, then $x = g^{-1}gx \in V^{(\Gamma)}$, and $\operatorname{dom}(g^{-1}gx) = \operatorname{dom}(g^{-1}u) = \operatorname{dom}(u)$. As the definition of v in this case is identical, we can just follow the proof(1 point).(if instead $v(x) = [x \subseteq u$ which is what was required for the proof of thm 3.19, then we just write out definitions as in 3a)