Seminar on Set Theory

Model solution 9

Exercise 1

Exercise 1a

(a) It suffices to show that $g(x \wedge y)=g(x) \wedge g(y)$ and $g\left(x^{*}\right)=g(x)^{*}$ for all $x, y \in B^{\prime}$. So let $x, y \in B$ be arbitrary. Since h is a bijection, we have

$$
g(x \wedge y)=g(x) \wedge g(y) \longleftrightarrow h(g(x \wedge y))=h(g(x) \wedge g(y)) .
$$

Now $h(g(x \wedge y))=x \wedge y$ and $h(g(x) \wedge g(y))=h(g(x)) \wedge h(g(y))=x \wedge y$, so indeed $g(x \wedge y)=g(x) \wedge g(y)$. Similarly

$$
g\left(x^{*}\right)=g(x)^{*} \longleftrightarrow h\left(g\left(x^{*}\right)\right)=h\left(g(x)^{*}\right) .
$$

So since $h\left(g\left(x^{*}\right)\right)=x^{*}$ and $h\left(g(x)^{*}\right)=h(g(x))^{*}=x^{*}$, we conclude that $g\left(x^{*}\right)=g(x)^{*}$. Hence, g is a homomorphism. (1.5 points)

Exercise 1b

Note that π and π^{-1} are both order preserving, as they are homomorphisms. Let $X \subseteq B$ and suppose that $\bigvee X$ exists in B. Since $\bigvee X \geq x$ for all $x \in X$, we have $\pi(\bigvee X) \geq \pi(x)$ for all $x \in X$, so $\pi(\bigvee X)$ is an upper bound for $\{\pi(x) \mid x \in X\}$. Suppose that $y \in B$ is also an upper bound for $\{\pi(x) \mid x \in X\}$. Then $y \geq \pi(x)$ for all $x \in X$, so $\pi^{-1}(y) \geq x$ for all $x \in X$. It follows that $\pi^{-1}(y)$ is an upper bound for X, so $\pi^{-1}(y) \geq \bigvee X$. This implies $y \geq \pi(\bigvee X)$. We conclude that $\pi(\bigvee X)$ is the least upper bound for $\{\pi(x) \mid x \in X\}$, so $\pi(\bigvee X)=\bigvee\{\pi(x) \mid x \in X\}$. Hence, π is a complete homomorphism. (1.5 points)

Exercise 1c

Suppose that B is homogeneous and let $x \neq 0, y \neq 0$ be in B. If we let $\pi^{\prime} \in \operatorname{Aut}(B)$, then

$$
\pi^{\prime}(\bigvee\{\pi(x) \mid \pi \in \operatorname{Aut}(B)\})=\bigvee\left\{\pi^{\prime}(\pi(x)) \mid \pi \in \operatorname{Aut}(B)\right\}
$$

by part b. Furthermore

$$
\bigvee\left\{\pi^{\prime}(\pi(x)) \mid \pi \in \operatorname{Aut}(B)\right\}=\bigvee\{\pi(x) \mid \pi \in \operatorname{Aut}(B)\}
$$

since $\pi^{\prime} \pi$ runs through $\operatorname{Aut}(B)$ as π runs through $\operatorname{Aut}(B)$. This means that $\bigvee\{\pi(x) \mid \pi \in \operatorname{Aut}(B)\}$ is invariant, so it must have value 0 or 1 , by homogeneity of B. Since $\bigvee\{\pi(x) \mid \pi \in \operatorname{Aut}(B)\} \geq \operatorname{id}(x)=x$ and $x \neq 0$, it follows that $\bigvee\{\pi(x) \mid \pi \in \operatorname{Aut}(B)\}=1$. Hence

$$
y=y \wedge \bigvee\{\pi(x) \mid \pi \in \operatorname{Aut}(B)\}=\bigvee\{y \wedge \pi(x) \mid \pi \in \operatorname{Aut}(B)\}
$$

So since $y \neq 0$, there must be $\pi \in \operatorname{Aut}(B)$ such that $y \wedge \pi(x) \neq 0$.
Conversely, suppose that B is not homogeneous. Then there exists an invariant element $y \in B$, with $y \neq 0$ and $y \neq 1$. But then $y^{*} \neq 0$, so if we take $x=y^{*}$, then we have found nonzero $x, y \in B$ such that

$$
x \wedge \pi(y)=y^{*} \wedge \pi(y)=y^{*} \wedge y=0
$$

for all $\pi \in \operatorname{Aut}(B)$. (2 points)

Exercise 2

Exercise 2a

This is shown by proving $V_{\alpha}^{(\Gamma)} \subseteq V_{\alpha}^{(B)}$ for any ordinal α. For α an ordinal, we can show $V_{\alpha}^{(\Gamma)} \subseteq V_{\alpha}^{(B)}$ by induction. Assume for all $\beta<\alpha$ we know $V_{\beta}^{(\Gamma)} \subseteq V_{\beta}^{(B)}$. Now let $x \in V_{\beta}^{(\Gamma)}$, then $\operatorname{Fun}(x) \wedge \operatorname{ran}(x) \subseteq B \wedge \exists \beta<\alpha \operatorname{dom}(x) \subseteq V_{\beta}^{(\Gamma)}$, so by the induction hyopthesis $\operatorname{Fun}(x) \wedge \operatorname{ran}(x) \subseteq B \wedge \exists \beta<\alpha \operatorname{dom}(x) \subseteq V_{\beta}^{(B)}$, so $x \in V_{\alpha}^{(B)}$. So by induction $V_{\alpha}^{(\Gamma)} \subseteq V_{\alpha}^{(B)}$ for any ordinal α, so $V^{(B)} \subseteq V^{(\Gamma)}$. (.5 points for a correct answer)

Exercise 2b

Let $u=\{\langle\emptyset, r\rangle\} \in V^{(B)}$. Now for $g \in \operatorname{stab}(u)$ we know $\{\langle\emptyset, r\rangle\}=u=g u=\{\langle g \emptyset, g r\rangle\}=\{\langle\emptyset, g r\rangle\}$, i.e. $g r=r$, so $\operatorname{stab}(u) \subseteq \operatorname{stab}(r)$. But as $\operatorname{stab}(r) \notin \Gamma, \operatorname{stab}(u) \notin \Gamma$ (because Γ is a filter of subgroups), so $u \notin V^{(\Gamma)}$. So $V^{(\Gamma)} \neq V^{(B)} .(.5$ points for a correct answer)

Exercise 2c

Note that if B^{\prime} obeys $a=\bigcap_{b^{\prime} \in B^{\prime}} \operatorname{stab}\left(b^{\prime}\right) \in \Gamma$ and it is maximal under this property, then $B^{\prime}=\{b \in B \mid a \subseteq \operatorname{stab}(b)\}$. For let $b \in B$ such that $a \subseteq \operatorname{stab}(b)$. Then $\bigcap_{b^{\prime} \in B^{\prime}} \operatorname{stab}\left(b^{\prime}\right) \cap \operatorname{stab}(b) \in \Gamma$ (because Γ is a filter of subgroups), so by maximality of B^{\prime} we know $b \in B^{\prime}$. So $B^{\prime} \subseteq\{b \in B \mid a \subseteq \operatorname{stab}(b)\}$. Now note that for any $b \in B^{\prime}$ that $a=\bigcap_{b^{\prime} \in B^{\prime}} \operatorname{stab}\left(b^{\prime}\right) \subseteq \operatorname{stab}(b)$, so $B^{\prime}=\{b \in B \mid a \subseteq \operatorname{stab}(b)\}$.
Now we find that for any $x, y \in B^{\prime}$ that $\operatorname{stab}(x \wedge y) \supseteq \operatorname{stab}(x) \cap \operatorname{stab}(y) \supseteq a($ as if $g \in \operatorname{stab}(x) \cap \operatorname{stab}(y)$, then $g(x \wedge y)=g x \wedge$ $g y=x \wedge y$), so $x \wedge y \in B^{\prime}$. Similarly $x \vee y, x \Rightarrow y, x^{*} \in B^{\prime}$, so B^{\prime} is a Boolean algebra(as these operations obey the required properties, as they do in B). (note that B^{\prime} is a complete Boolean algebra by for $X \subseteq B^{\prime}, \operatorname{stab}(V X) \supseteq \bigcap_{x \in X} \operatorname{stab}(x) \supseteq a$ so $\bigvee X \in B^{\prime}$, and similarly $\bigwedge X \in B^{\prime}$). (1 point for proving that B^{\prime} is a Boolean algebra)
Now we can show for any $u \in V^{\left(B^{\prime}\right)}$ that $\operatorname{stab}(u) \supseteq a$ by induction on $V_{\alpha}^{\left(B^{\prime}\right)}$. As let α be an ordinal, and for any $\beta<\alpha$ we know that for any $u \in V_{\beta}^{\left(B^{\prime}\right)}$ that $\operatorname{stab}(u) \supseteq a$. Now let $u \in V_{\alpha}^{\left(B^{\prime}\right)}$. Then $\operatorname{Fun}(u) \wedge \operatorname{ran}(u) \subseteq B^{\prime} \wedge \exists \beta<\alpha \operatorname{dom}(u) \subseteq V_{\beta}^{\left(B^{\prime}\right)}$. So let $g \in a$, then $g u=\{\langle g x, g(u(x))\rangle \mid x \in \operatorname{dom}(u)\}$. By the induction hypothesis for any $x \in \operatorname{dom}(u)$ we know that $g x=x$, and by definition of B^{\prime} we know that for any $b \in B^{\prime} g b=b$, so $g(u(x))=u(x)$. So $g u=\{\langle x, u(x)\rangle \mid x \in \operatorname{dom}(u)\}=u$. So $\operatorname{stab}(u) \supseteq a$.
Now by induction on ordinals α we can find that $V_{\alpha}^{\left(B^{\prime}\right)} \subseteq V_{\alpha}^{(\Gamma)}$. As let α be an ordinal, and for any $\beta<\alpha$ we know that $V_{\beta}^{\left(B^{\prime}\right)} \subseteq V_{\beta}^{(\Gamma)}$. Now if $x \in V_{\alpha}^{\left(B^{\prime}\right)}$ then $\operatorname{Fun}(x) \wedge \operatorname{ran}(x) \subseteq B^{\prime} \wedge \exists \beta<\alpha \operatorname{dom}(x) \subseteq V_{\beta}^{\left(B^{\prime}\right)}$. Then by the induction hypothesis(and $\left.B^{\prime} \subseteq B\right) \operatorname{Fun}(x) \wedge \operatorname{ran}(x) \subseteq B \wedge \exists \beta<\alpha \operatorname{dom}(x) \subseteq V_{\beta}^{(\Gamma)}$, and by the previous part stab $(x) \supseteq a$ so $\operatorname{stab}(x) \in \Gamma$, so $x \in V_{\alpha}^{(\Gamma)}$. So by induction for any ordinal α we know that $V_{\alpha}^{\left(B^{\prime}\right)} \subseteq V_{\alpha}^{(\Gamma)}$, so $V^{\left(B^{\prime}\right)} \subseteq V^{(\Gamma)}$. (1 point for correctly using induction)

Exercise 3

Exercise 3a

Let $g \in \operatorname{stab}(u)$. Then

$$
\begin{aligned}
\operatorname{dom}(g v) & =\bigcup\{g \operatorname{dom}(y) \mid y \in \operatorname{dom}(u)\} \\
& =\bigcup\{\operatorname{dom}(g y) \mid y \in \operatorname{dom}(u)\} \\
& =\bigcup\left\{\operatorname{dom}(y) \mid g^{-1} y \in \operatorname{dom}(u)\right\} \\
& =\bigcup\{\operatorname{dom}(y) \mid y \in \operatorname{dom}(g u)\}=\operatorname{dom}(v)
\end{aligned}
$$

using the property that $\operatorname{dom}(g y)=\{g x \mid x \in \operatorname{dom}(y)\}$ for any $y \in V^{(\Gamma)}$.(.5 points)
Now for $x \in \operatorname{dom}(g v)$ we know that:

$$
\begin{aligned}
(g v)(x) & =g\left(v\left(g^{-1}(x)\right)\right. \\
& =g \llbracket \exists y \in u\left[g^{-1} x \in y\right] \rrbracket^{\Gamma} \\
& =\llbracket \exists y \in g u\left[g g^{-1} x \in y\right] \rrbracket^{\Gamma} \\
& =\llbracket \exists y \in u\left[x \in y \rrbracket \rrbracket^{\Gamma}=v(x)\right.
\end{aligned}
$$

So $g \in \operatorname{stab}(v)$, so this completes the proof. (.5 points)

Exercise 3b

Let $g \in \operatorname{stab}(u)$. Then if $x \in \operatorname{dom}(g v)$, then $g x \in B^{\operatorname{dom}(u)} \cap V^{(\Gamma)}$, so in other words $g x \in V^{(\Gamma)}$ and $\operatorname{dom}(g x)=\operatorname{dom}(u)$. But if $g x \in V^{(\Gamma)}$, then $x=g^{-1} g x \in V^{(\Gamma)}$, and $\operatorname{dom}\left(g^{-1} g x\right)=\operatorname{dom}\left(g^{-1} u\right)=\operatorname{dom}(u)$. As the definition of v in this case is identical, we can just follow the proof(1 point).(if instead $v(x)=\llbracket x \subseteq u$ which is what was required for the proof of thm 3.19, then we just write out definitions as in 3a)

