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Exercise 1

Exercise 1a

(a) It suffices to show that g(x ∧ y) = g(x) ∧ g(y) and g(x∗) = g(x)∗ for all x, y ∈ B′. So let x, y ∈ B be arbitrary. Since
h is a bijection, we have

g(x ∧ y) = g(x) ∧ g(y)←→ h(g(x ∧ y)) = h(g(x) ∧ g(y)).

Now h(g(x ∧ y)) = x ∧ y and h(g(x) ∧ g(y)) = h(g(x)) ∧ h(g(y)) = x ∧ y, so indeed g(x ∧ y) = g(x) ∧ g(y). Similarly

g(x∗) = g(x)∗ ←→ h(g(x∗)) = h(g(x)∗).

So since h(g(x∗)) = x∗ and h(g(x)∗) = h(g(x))∗ = x∗, we conclude that g(x∗) = g(x)∗. Hence, g is a homomorphism. (1.5
points)

Exercise 1b

Note that π and π−1 are both order preserving, as they are homomorphisms. Let X ⊆ B and suppose that
∨
X exists in

B. Since
∨
X ≥ x for all x ∈ X, we have π (

∨
X) ≥ π(x) for all x ∈ X, so π (

∨
X) is an upper bound for {π(x) | x ∈ X}.

Suppose that y ∈ B is also an upper bound for {π(x) | x ∈ X}. Then y ≥ π(x) for all x ∈ X, so π−1(y) ≥ x for all x ∈ X.
It follows that π−1(y) is an upper bound for X, so π−1(y) ≥

∨
X. This implies y ≥ π (

∨
X). We conclude that π (

∨
X)

is the least upper bound for {π(x) | x ∈ X}, so π (
∨
X) =

∨
{π(x) | x ∈ X}. Hence, π is a complete homomorphism. (1.5

points)

Exercise 1c

Suppose that B is homogeneous and let x 6= 0, y 6= 0 be in B. If we let π′ ∈ Aut(B), then

π′
(∨
{π(x) | π ∈ Aut(B)}

)
=
∨
{π′(π(x)) | π ∈ Aut(B)},

by part b. Furthermore ∨
{π′(π(x)) | π ∈ Aut(B)} =

∨
{π(x) | π ∈ Aut(B)},

since π′π runs through Aut(B) as π runs through Aut(B). This means that
∨
{π(x) | π ∈ Aut(B)} is invariant, so it

must have value 0 or 1, by homogeneity of B. Since
∨
{π(x) | π ∈ Aut(B)} ≥ id(x) = x and x 6= 0, it follows that∨

{π(x) | π ∈ Aut(B)} = 1. Hence

y = y ∧
∨
{π(x) | π ∈ Aut(B)} =

∨
{y ∧ π(x) | π ∈ Aut(B)}.

So since y 6= 0, there must be π ∈ Aut(B) such that y ∧ π(x) 6= 0.
Conversely, suppose that B is not homogeneous. Then there exists an invariant element y ∈ B, with y 6= 0 and y 6= 1.
But then y∗ 6= 0, so if we take x = y∗, then we have found nonzero x, y ∈ B such that

x ∧ π(y) = y∗ ∧ π(y) = y∗ ∧ y = 0,

for all π ∈ Aut(B). (2 points)
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Exercise 2

Exercise 2a

This is shown by proving V
(Γ)
α ⊆ V

(B)
α for any ordinal α. For α an ordinal, we can show V

(Γ)
α ⊆ V

(B)
α by induction.

Assume for all β < α we know V
(Γ)
β ⊆ V (B)

β . Now let x ∈ V (Γ)
β , then Fun(x) ∧ ran(x) ⊆ B ∧ ∃β < αdom(x) ⊆ V (Γ)

β , so by

the induction hyopthesis Fun(x) ∧ ran(x) ⊆ B ∧ ∃β < αdom(x) ⊆ V
(B)
β , so x ∈ V (B)

α . So by induction V
(Γ)
α ⊆ V

(B)
α for

any ordinal α, so V (B) ⊆ V (Γ). (.5 points for a correct answer)

Exercise 2b

Let u = {〈∅, r〉} ∈ V (B). Now for g ∈ stab(u) we know {〈∅, r〉} = u = gu = {〈g∅, gr〉} = {〈∅, gr〉}, i.e. gr = r, so
stab(u) ⊆ stab(r). But as stab(r) 6∈ Γ, stab(u) 6∈ Γ(because Γ is a filter of subgroups), so u 6∈ V (Γ). So V (Γ) 6= V (B).(.5
points for a correct answer)

Exercise 2c

Note that if B′ obeys a =
⋂
b′∈B′ stab(b′) ∈ Γ and it is maximal under this property, then B′ = {b ∈ B|a ⊆ stab(b)}. For

let b ∈ B such that a ⊆ stab(b). Then
⋂
b′∈B′ stab(b′) ∩ stab(b) ∈ Γ(because Γ is a filter of subgroups), so by maximality

of B′ we know b ∈ B′. So B′ ⊆ {b ∈ B|a ⊆ stab(b)}. Now note that for any b ∈ B′ that a =
⋂
b′∈B′ stab(b′) ⊆ stab(b), so

B′ = {b ∈ B|a ⊆ stab(b)}.
Now we find that for any x, y ∈ B′ that stab(x∧y) ⊇ stab(x)∩stab(y) ⊇ a(as if g ∈ stab(x)∩stab(y), then g(x∧y) = gx∧
gy = x∧y), so x∧y ∈ B′. Similarly x∨y, x⇒ y, x∗ ∈ B′, so B′ is a Boolean algebra(as these operations obey the required
properties, as they do in B). (note that B′ is a complete Boolean algebra by for X ⊆ B′, stab(

∨
X) ⊇

⋂
x∈X stab(x) ⊇ a

so
∨
X ∈ B′, and similarly

∧
X ∈ B′). (1 point for proving that B′ is a Boolean algebra)

Now we can show for any u ∈ V (B′) that stab(u) ⊇ a by induction on V
(B′)
α . As let α be an ordinal, and for any β < α we

know that for any u ∈ V (B′)
β that stab(u) ⊇ a. Now let u ∈ V (B′)

α . Then Fun(u) ∧ ran(u) ⊆ B′ ∧ ∃β < αdom(u) ⊆ V (B′)
β .

So let g ∈ a, then gu = {〈gx, g(u(x))〉|x ∈ dom(u)}. By the induction hypothesis for any x ∈ dom(u) we know that gx = x,
and by definition of B′ we know that for any b ∈ B′ gb = b, so g(u(x)) = u(x). So gu = {〈x, u(x)〉|x ∈ dom(u)} = u. So
stab(u) ⊇ a.

Now by induction on ordinals α we can find that V
(B′)
α ⊆ V

(Γ)
α . As let α be an ordinal, and for any β < α we know that

V
(B′)
β ⊆ V (Γ)

β . Now if x ∈ V (B′)
α then Fun(x)∧ran(x) ⊆ B′∧∃β < αdom(x) ⊆ V (B′)

β . Then by the induction hypothesis(and

B′ ⊆ B) Fun(x)∧ ran(x) ⊆ B ∧ ∃β < αdom(x) ⊆ V (Γ)
β , and by the previous part stab(x) ⊇ a so stab(x) ∈ Γ, so x ∈ V (Γ)

α .

So by induction for any ordinal α we know that V
(B′)
α ⊆ V (Γ)

α , so V (B′) ⊆ V (Γ). (1 point for correctly using induction)

Exercise 3

Exercise 3a

Let g ∈ stab(u). Then

dom(gv) =
⋃
{gdom(y)|y ∈ dom(u)}

=
⋃
{dom(gy)|y ∈ dom(u)}

=
⋃
{dom(y)|g−1y ∈ dom(u)}

=
⋃
{dom(y)|y ∈ dom(gu)} = dom(v)

using the property that dom(gy) = {gx|x ∈ dom(y)} for any y ∈ V (Γ).(.5 points)
Now for x ∈ dom(gv) we know that:

(gv)(x) = g(v(g−1(x))

= gJ∃y ∈ u[g−1x ∈ y]KΓ

= J∃y ∈ gu[gg−1x ∈ y]KΓ

= J∃y ∈ u[x ∈ y]KΓ = v(x)

So g ∈ stab(v), so this completes the proof. (.5 points)

2



Exercise 3b

Let g ∈ stab(u). Then if x ∈ dom(gv), then gx ∈ Bdom(u) ∩ V (Γ), so in other words gx ∈ V (Γ) and dom(gx) = dom(u).
But if gx ∈ V (Γ), then x = g−1gx ∈ V (Γ), and dom(g−1gx) = dom(g−1u) = dom(u). As the definition of v in this case is
identical, we can just follow the proof(1 point).(if instead v(x) = Jx ⊆ u which is what was required for the proof of thm
3.19, then we just write out definitions as in 3a)
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