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Exercise 1

Exercise 1la

(a) It suffices to show that g(x Ay) = g(x) A g(y) and g(x*) = g(x)* for all x,y € B’. So let z,y € B be arbitrary. Since
h is a bijection, we have

g9z Ny) = g(x) Agly) «— h(g(z Ay)) = h(g(x) A g(y))-
Now h(g(z Ay)) =z Ay and h(g(z) A g(y)) = h(g(x)) Ah(g(y)) = = Ay, so indeed g(z Ay) = g(z) A g(y). Similarly

9(z") = g(x)" «— h(g(z")) = h(g(z)").
So since h(g(x*)) = 2* and h(g(x)*) = h(g(x))* = x*, we conclude that g(x*) = g(z)*. Hence, g is a homomorphism. (1.5
points)
Exercise 1b

Note that 7 and 7! are both order preserving, as they are homomorphisms. Let X C B and suppose that \/ X exists in
B. Since \/ X > z for all z € X, we have 7 (\/ X) > n(z) for all z € X, so 7 (\/ X) is an upper bound for {n(x) | z € X}.
Suppose that y € B is also an upper bound for {m(z) | z € X}. Then y > 7(z) for all x € X, so 7~ *(y) > x for all x € X.
It follows that 7=!(y) is an upper bound for X, so #=*(y) > \/ X. This implies y > 7 (\/ X). We conclude that 7 (\/ X)
is the least upper bound for {r(x) | z € X}, so 7 (\V X) = \/{r(z) | z € X}. Hence, 7 is a complete homomorphism. (1.5
points)

Exercise 1c

Suppose that B is homogeneous and let  # 0, y # 0 be in B. If we let 7’ € Aut(B), then

(\/{77 )| © e Aut(B ) \/ {7 (r(2)) | 7 € Aut(B)},

by part b. Furthermore
\/{w ) | ™€ Aut(B)} = \/{77 ) | ™€ Aut(B)},

since 7'w runs through Aut(B) as m runs through Aut(B). This means that \/{n(z) | 7 € Aut(B)} is invariant, so it
must have value 0 or 1, by homogeneity of B. Since \/{w(x) | 7 € Aut(B)} > id(z) = = and = # 0, it follows that
V{m(x) | # € Aut(B)} = 1. Hence

y=yA\{r(@)|7eAu(B)} = \/{yAr(z)|r e Aut(B)}.

So since y # 0, there must be 7 € Aut(B) such that y A w(x) # 0.
Conversely, suppose that B is not homogeneous. Then there exists an invariant element y € B, with y # 0 and y # 1.
But then y* # 0, so if we take x = y*, then we have found nonzero x,y € B such that

e AT(y) =y An(y) =y ANy =0,

for all # € Aut(B). (2 points)



Exercise 2

Exercise 2a

This is shown by proving VOEF) - VUEB) for any ordinal «. For « an ordinal, we can show chr) C VCSB) by induction.
Assume for all 8 < « we know Vﬂ(r) C Vﬁ(B). Now let x € Vﬂ(r), then Fun(xz) Aran(z) C B A 38 < adom(z) C VB(F), so by
the induction hyopthesis Fun(z) A ran(z) € B A 35 < adom(x) C VB(B), so z € VA%, So by induction VA" ¢ VP for

any ordinal o, so VB C V() (.5 points for a correct answer)

Exercise 2b

Let u = {(B,7)} € V(B). Now for g € stab(u) we know {(0,7)} = u = gu = {(g0,gr)} = {(D,gr)}, i.e. gr =7, so
stab(u) C stab(r). But as stab(r) € T, stab(u) ¢ I'(because I is a filter of subgroups), so v & VI, So V(I £ V(B) (5

points for a correct answer)

Exercise 2c¢

Note that if B" obeys a = [, .5 stab(d') € " and it is maximal under this property, then B’ = {b € Bla C stab(b)}. For
let b € B such that a C stab(b). Then [, . stab(b’) Nstab(b) € I'(because I' is a filter of subgroups), so by maximality
of B" we know b € B'. So B’ C {b € Bla C stab(b)}. Now note that for any b € B that a = [, p, stab(b’) C stab(b), so
B’ = {b € Bla C stab(b)}.

Now we find that for any z,y € B’ that stab(x Ay) D stab(x)Nstab(y) 2 a(as if g € stab(z) Nstab(y), then g(x Ay) = gz A
gy = xAy),so x Ay € B'. Similarly zVy,x = y,2* € B, so B’ is a Boolean algebra(as these operations obey the required
properties, as they do in B). (note that B’ is a complete Boolean algebra by for X C B, stab(\/ X) 2 [,y stab(z) 2 a
so VV X € B, and similarly A X € B’). (1 point for proving that B’ is a Boolean algebra)

Now we can show for any u € V(5" that stab(u) 2 a by induction on V). Aslet a be an ordinal, and for any 8 < « we

know that for any u € V) that stab(u) 2 a. Now let u € VP). Then Fun(u) Aran(u) € B’ A38 < adom(u) C VB(B,).
So let g € a, then gu = {{gx, g(u(z)))|x € dom(u)}. By the induction hypothesis for any 2 € dom(u) we know that gz = x,
and by definition of B’ we know that for any b € B’ gb = b, so g(u(z)) = u(z). So gu = {(z,u(z))|z € dom(u)} = u. So
stab(u) 2 a.

Now by induction on ordinals o we can find that VOEB ) C VCSF). As let o be an ordinal, and for any 8 < « we know that
VB(B ) C Vﬁ(r). Now if 2 € VA then Fun(z)Aran(z) C B'A38 < adom(z) C Vﬂ(B ). Then by the induction hypothesis(and
B’ C B) Fun(z) Aran(z) € BA 3B < adom(z) C Vér), and by the previous part stab(z) 2 a so stab(z) € I, so z € Vil
So by induction for any ordinal o we know that V(J(,B/) C V(ﬁr), so VB) cy@, (1 point for correctly using induction)

Exercise 3

Exercise 3a

Let g € stab(u). Then

dom(gv) = | J{gdom(y)|y € dom(u)}
= | J{dom(gy)|y € dom(u)}
= | J{dom(y)|g~'y € dom(u)}
= | J{dom(y)|y € dom(gu)} = dom(v)

using the property that dom(gy) = {gz|x € dom(y)} for any y € VI .(.5 points)
Now for x € dom(gv) we know that:

(gv)(x) = g(v(g~"(x))
=983y e ulg 'z eyl
= [3y € gulgg 'z € y]]"
= [By € ufz € y]]" = v(2)

1

So g € stab(v), so this completes the proof. (.5 points)



Exercise 3b

Let g € stab(u). Then if z € dom(gv), then gz € B™® N VI 5o in other words gz € VI and dom(gz) = dom(u).
But if gz € V1), then 2 = g~ 'gz € V), and dom(g~'gx) = dom(g~'u) = dom(u). As the definition of v in this case is
identical, we can just follow the proof(1 point).(if instead v(z) = [« C w which is what was required for the proof of thm
3.19, then we just write out definitions as in 3a)



