Seminar on Set Theory

Hand-in exercise 1 September 18, 2015

Note: in this exercise, you are allowed to use all properties of Heyting algebras listed on the hand-out.

Let (H, \leq) be a Heyting algebra.

- (a) Show that the operation $(\cdot)^* : H \to H$ is order reversing. That is, if $x \leq y$, then $y^* \leq x^*$ for all $x, y \in H$.
- (b) Define $B = \{x \in H \mid x^{**} = x\}$. Show that B with the order induced from H is a Boolean algebra, with greatest element, least element, meet and complement operations induced from H, and $x \lor_B y = (x \lor_H y)^{**}$. Remark: it suffices to show that B is a complemented bounded lattice.
- (c) Show that if H is complete, then so is B.

We call B the regularization of H.

Now recall that for a topological space X, the collection of opens O(X) is a Heyting algebra, with operations

$$U \wedge V = U \cap V, \quad U \vee V = U \cup V, \quad U \Rightarrow V = \overbrace{(X - U) \cup V}^{\circ} \text{ and } U^* = \overbrace{X - U}^{\circ}.$$

We call a $U \subset X$ regular open if $U = \overline{U}$. The collection of regular opens of X is denoted by RO(X).

(d) Prove that RO(X) is the regularization of O(X).

In particular, RO(X) can be made into a complete Boolean algebra.

(e) Show that, for a Heyting algebra H, the join operation on its regularization is not necessarily induced from H itself.