Seminar on Set Theory

Hand-in exercise 12

December 11, 2015

$\mathcal{P}\omega \cap L$ can be countable

(a) (6 points) Let λ be a cardinal with $\lambda \geq \aleph_0$ and let B be the the collapsing $(\aleph_0, 2^{\lambda})$ -algebra. Show that

$$V^{(B)} \models \mathcal{P}\hat{\lambda} \cap L \text{ is countable.}$$

Hints:

- (i) First prove that $V^{(B)} \models \mathcal{P}\hat{\lambda} \cap L \subseteq \widehat{\mathcal{P}}\hat{\lambda}$.
- (ii) Recall Theorem 1.46.
- (b) (4 points) Let M be a countable transitive model of ZFC + $2^{\aleph_0} = \aleph_1$, put $B = (\operatorname{RO}(\omega_1^{\omega}))^{(M)}$ and let U be an M-generic ultrafilter in B. Show that

 $M[U] \models \mathcal{P}\omega \cap L$ is countable.