# Seminar on Set Theory 

Hand-in exercise 13
December 18, 2015

Exercise 1 Suppose $B$ is a Boolean algebra and $X=\left\{x_{1}, \ldots, x_{n}\right\} \subseteq B$ is a non-empty finite subset of $B$. Define for every $y \in B$ and $i \in 2$ :

$$
p(y, i)=\left\{\begin{array}{lll}
y & \text { if } & i=1 \\
y^{*} & \text { if } & i=0
\end{array}\right.
$$

For every element $f \in 2^{X}$, let $p_{f}=\bigwedge_{y \in X} p(y, f(y))$. Now let $\mathcal{F} \subseteq 2^{X}$ be the set of all functions $f$ such that $p_{f} \neq 0$. It is easily seen (so you may assume without proof) that $|\mathcal{F}|>1$. For $A \subseteq \mathcal{F}$ we write $p_{A}=\bigvee_{f \in A} p_{f}$.
(a) (4 points) Prove that $C=\left\{p_{A} \mid A \subseteq \mathcal{F}\right\} \subseteq B$ is a Boolean subalgebra of $B$.
(b) (4 points) Let $B^{\prime}$ be the Boolean subalgebra generated by $X$. Prove that $B^{\prime}=C$.
(c) (2 points) Use the relation between elements of $C$ and elements of the form $p_{f}$ to prove that a Boolean algebra generated by $n>0$ elements contains at most $2^{2^{n}}$ elements.

