Seminar on Set Theory

Hand-in exercise 13 December 18, 2015

Exercise 1 Suppose B is a Boolean algebra and $X = \{x_1, ..., x_n\} \subseteq B$ is a non-empty finite subset of B. Define for every $y \in B$ and $i \in 2$:

$$p(y,i) = \begin{cases} y & \text{if } i = 1\\ y^* & \text{if } i = 0 \end{cases}$$

For every element $f \in 2^X$, let $p_f = \bigwedge_{y \in X} p(y, f(y))$. Now let $\mathcal{F} \subseteq 2^X$ be the set of all functions f such that $p_f \neq 0$. It is easily seen (so you may assume without proof) that $|\mathcal{F}| > 1$. For $A \subseteq \mathcal{F}$ we write $p_A = \bigvee_{f \in A} p_f$.

- (a) (4 points) Prove that $C = \{p_A \mid A \subseteq \mathcal{F}\} \subseteq B$ is a Boolean subalgebra of B.
- (b) (4 points) Let B' be the Boolean subalgebra generated by X. Prove that B' = C.
- (c) (2 points) Use the relation between elements of C and elements of the form p_f to prove that a Boolean algebra generated by n > 0 elements contains at most 2^{2^n} elements.