Exercise 1

Let \mathcal{P} be a set of projections.

- (i) Let $P, Q \in \mathcal{P}$. Show that if P and Q commute, then they are compatible.
(This part is worth 2 points)
- (ii) Let $\{P\} \cup\left\{Q_{i} i \in I\right\} \subseteq \mathcal{P}$. Show that if P is compatible with each Q_{i} for $i \in I$, the P is compatible with both $\bigvee_{i \in I} Q_{i}$ and $\bigwedge_{i \in I} Q_{i}$.
Hint: First prove that P and Q are compatible, iff there exist $P_{1}, P_{2} \in \mathcal{P}$ such that $P=P_{1} \vee P_{2}, P_{1} \leq Q$ and $P_{2} \leq Q^{c}$
(This part is worth 4 points)

Exercise 2

Let $u, v \in \mathbb{R}^{(\mathcal{B})}$ with A, B corresponding self-adjoint operators in $\overline{\mathcal{B}}$ and $E_{\lambda}, E_{\lambda}^{\prime}$ corresponding spectral families.
Show that $\llbracket u \leq v \rrbracket=1$ if and only if $\forall \lambda \in \mathbb{R}\left(E_{\lambda}^{\prime} \leq E_{\lambda}\right)$.
This property is equivalent to $A \leq B$ (not part of exercise). Hint: $\llbracket \hat{\mathbb{Q}}=\mathbb{Q} \rrbracket=1$ because they are both similarly defined from ω.
(This part is worth 4 points)

