Exercise 1

Let \mathcal{P} be a set of projections.

• (i) Let $P, Q \in \mathcal{P}$. Show that if P and Q commute, then they are compatible.

(This part is worth 2 points)

• (ii) Let $\{P\} \cup \{Q_i \ i \in I\} \subseteq \mathcal{P}$. Show that if P is compatible with each Q_i for $i \in I$, the P is compatible with both $\bigvee_{i \in I} Q_i$ and $\bigwedge_{i \in I} Q_i$. Hint: First prove that P and Q are compatible, iff there exist $P_1, P_2 \in \mathcal{P}$ such that $P = P_1 \vee P_2, P_1 \leq Q$ and $P_2 \leq Q^c$ (This part is worth 4 points)

Exercise 2

Let $u, v \in \mathbb{R}^{(\mathcal{B})}$ with A, B corresponding self-adjoint operators in $\overline{\mathcal{B}}$ and $E_{\lambda}, E'_{\lambda}$ corresponding spectral families. Show that $\llbracket u \leq v \rrbracket = 1$ if and only if $\forall \lambda \in \mathbb{R}(E'_{\lambda} \leq E_{\lambda})$. This property is equivalent to $A \leq B$ (not part of exercise). *Hint:* $\llbracket \hat{\mathbb{Q}} = \mathbb{Q} \rrbracket = 1$ because they are both similarly defined from ω .

(This part is worth 4 points)