Seminar on Set Theory

Hand-in exercise 15 January 15, 2016 (due Jan. 22)

Exercise 1. (For this exercise you can use the handout as a reference). Prove that over the remaining axioms of ZF...

- (i) Replacement and Collection are equivalent. (1 point)
- (ii) Regularity and Set Induction are equivalent. (2 points)
- (iii) The Axiom of Fullness is

 $\forall u \forall v \exists x [\forall y \in x \; \mathrm{TRel}(y, u, v) \land \forall w [\mathrm{TRel}(w, u, v) \to \exists z \in x \; z \subseteq w]].$

Here $\operatorname{TRel}(R, u, v)$ states that R is a total relation between u and v, i.e.

$$\forall z \in R \exists x \in u \exists y \in v \ z = \langle x, y \rangle \land \forall x \in u \exists y \in v \langle x, y \rangle \in R.$$

Prove Subset Collection and Fullness are equivalent over the other axioms of CZF. (2 points)

Exercise 2. In this exercise, we work in IZF. We write 'LEM' for the Law of the Excluded Middle, stating that $\phi \lor \neg \phi$ holds for all \mathcal{L} -sentences ϕ . The variables α, β, γ range over ordinals.

- (i) Show that $\forall \alpha, \beta \ (\alpha < \beta^+ \to \alpha \le \beta)$ holds. (1 point)
- (ii) Show that $\forall \alpha, \beta \ (\alpha \leq \beta \rightarrow \alpha < \beta^+)$ implies LEM. (1 point)
- (iii) Use the previous part to show that $\forall \alpha, \beta, \gamma \ (\alpha \leq \beta < \gamma \rightarrow \alpha < \gamma)$ implies LEM as well. (1 point)
- (iv) Let $WL(\alpha)$ be the sentence expressing that α is a weak limit. Show that

$$\forall \alpha \; (\mathrm{WL}(\alpha) \lor \exists \beta \; (\alpha = \beta^+))$$

implies LEM. (2 points)

Hint: for parts (ii) and (iv), recall that $\{0 \mid \phi\}$ *is an ordinal.*