Hand-in 16: Seminar Set Theory

January 25, 2016

Problem 1: Category Theory

When defining products, exponential objects, and monomorphisms during the lecture, we first considered the construction in terms of morphisms $1 \rightarrow A$, and then generalised this to morphisms $Z \rightarrow A$ for any object Z.

For any one of these constructions:
(a, 0.5 points): Show that in Set, the definition remains equivalent if we replace "for any object Z " with "for some terminal object 1 ".
(b, 0.5 points): Show that this is not necessarily the case for an arbitrary topos. (Hint: Set ${ }^{2}$ with all operations defined componentwise is a topos.)

Now let \mathcal{C} be an arbitrary category with a terminal object 1 .
(c, 0.5 point): Show that for any object A of \mathcal{C}, any morphism $x: 1 \rightarrow A$ is a monomorphism.

Assume furthermore that \mathcal{C} is an elementary topos.
(d, 0.5 point): Let 0 be an object such that for all $Z \in O b$, there exists exactly one morphism $f: 0 \rightarrow Z$. Show that f is a monomorphism.

Let $A \in O b$ and supppose the product $A \times 1$ exists in \mathcal{C}. We say two objects A and B are isomorphic if there exist morphisms $f: A \rightarrow B$ and $g: B \rightarrow A$ such that $g \circ f=i d_{A}$ and $f \circ g=i d_{B}$.
(e, 0.5 point): Show that A and $A \times 1$ are isomorphic.
Problem 2: Truth in $S e t_{H}$
Let H be a complete Heyting algebra.
Definition 1. An H-set is a pair (X, δ) where $\delta: X \times X \rightarrow H$ satisfying

$$
\begin{aligned}
\delta\left(x, x^{\prime}\right) & =\delta\left(x^{\prime}, x\right) & & \forall x, x^{\prime} \in X \\
\delta\left(x, x^{\prime}\right) \wedge \delta\left(x^{\prime}, x^{\prime \prime}\right) & \leq \delta\left(x, x^{\prime \prime}\right) & & \forall x, x^{\prime}, x^{\prime \prime} \in X
\end{aligned}
$$

Definition 2. An H-valued functional relation (for brevity: H-function) from $\left(X, \delta_{X}\right)$ to $\left(Y, \delta_{Y}\right)$ is a function $f: X \times Y \rightarrow H$ satisfying

$$
\begin{aligned}
& \delta_{X}\left(x, x^{\prime}\right) \wedge f\left(x^{\prime}, y\right) \leq f(x, y) \quad \forall x, x^{\prime} \in X, y \in Y \\
& f(x, y) \wedge \delta_{Y}\left(y, y^{\prime}\right) \leq f\left(x, y^{\prime}\right) \quad \forall x \in X, y, y^{\prime} \in Y \\
& f(x, y) \wedge f\left(x, y^{\prime}\right) \leq \delta_{Y}\left(y, y^{\prime}\right) \quad \forall x \in X, y, y^{\prime} \in Y \\
& \bigvee_{y \in Y} f(x, y)=\delta_{X}(x, x) \quad \forall x \in X .
\end{aligned}
$$

Define composition of $f:\left(X, \delta_{X}\right) \rightarrow\left(Y, \delta_{Y}\right)$ and $g:\left(Y, \delta_{Y}\right) \rightarrow\left(Z, \delta_{Z}\right)$ by

$$
(g \circ f)(x, z)=\bigvee_{y \in Y}(f(x, y) \wedge g(y, z))
$$

(2.5 points): We claim $S e t_{H}$ is a topos. Find the terminal object 1, the truth-value object Ω, and the true : $1 \rightarrow \Omega$ morphism and show that they satisfy definitions 2 and 7 of the handout.

