Hand-in 16: Seminar Set Theory

January 25, 2016

Problem 1: Category Theory

When defining products, exponential objects, and monomorphisms during the lecture, we first considered the construction in terms of morphisms $1 \to A$, and then generalised this to morphisms $Z \to A$ for any object Z.

For any one of these constructions:

(a, 0.5 points): Show that in Set, the definition remains equivalent if we replace "for any object Z" with "for some terminal object 1".

(b, 0.5 points): Show that this is not necessarily the case for an arbitrary topos. (Hint: Set^2 with all operations defined componentwise is a topos.)

Now let C be an arbitrary category with a terminal object 1.

(c, 0.5 point): Show that for any object A of C, any morphism $x : 1 \to A$ is a monomorphism.

Assume furthermore that ${\mathcal C}$ is an elementary topos.

(d, 0.5 point): Let 0 be an object such that for all $Z \in Ob$, there exists exactly one morphism $f: 0 \to Z$. Show that f is a monomorphism.

Let $A \in Ob$ and suppose the product $A \times 1$ exists in C. We say two objects A and B are isomorphic if there exist morphisms $f : A \to B$ and $g : B \to A$ such that $g \circ f = id_A$ and $f \circ g = id_B$.

(e, 0.5 point): Show that A and $A \times 1$ are isomorphic.

Problem 2: Truth in Set_H

Let H be a complete Heyting algebra.

Definition 1. An *H*-set is a pair (X, δ) where $\delta : X \times X \to H$ satisfying

$\delta(x,x')=\delta(x',x)$	$\forall x, x' \in X$
$\delta(x, x') \land \delta(x', x'') \le \delta(x, x'')$	$\forall x, x', x'' \in X.$

Definition 2. An *H*-valued functional relation (for brevity: *H*-function) from (X, δ_X) to (Y, δ_Y) is a function $f : X \times Y \to H$ satisfying

$$\delta_X(x,x') \wedge f(x',y) \leq f(x,y) \qquad \forall x, x' \in X, y \in Y$$

$$f(x,y) \wedge \delta_Y(y,y') \leq f(x,y') \qquad \forall x \in X, y, y' \in Y$$

$$f(x,y) \wedge f(x,y') \leq \delta_Y(y,y') \qquad \forall x \in X, y, y' \in Y$$

$$\bigvee_{y \in Y} f(x,y) = \delta_X(x,x) \qquad \forall x \in X.$$

Define composition of $f: (X, \delta_X) \to (Y, \delta_Y)$ and $g: (Y, \delta_Y) \to (Z, \delta_Z)$ by

$$(g \circ f)(x, z) = \bigvee_{y \in Y} \left(f(x, y) \land g(y, z) \right).$$

(2.5 points): We claim Set_H is a topos. Find the terminal object 1, the truth-value object Ω , and the true : $1 \rightarrow \Omega$ morphism and show that they satisfy definitions 2 and 7 of the handout.