Seminar on Set Theory

HAND-IN EXERCISE 3

October 2, 2015

Exercise 1

Let R be a well-founded relation on V, the universe of sets. A function on V is a class of ordered pairs which defines a single-valued mapping of V into V. The principle of recursion on a well-founded relation R is the assertion that if F is any function on V, then there is a function G on V such that

$$\forall u[G(u)=F(\langle u,G|Ru\rangle)].$$

Prove that the principle of recursion on well-founded relations holds in ZF.

Exercise 2

Let $V^{(B)}$ be the universe of *B*-valued sets for some fixed complete Boolean algebra *B*. By Theorem 1.17(ii), it holds that $u(x) \leq [x \in u]$ for all $u \in V^{(B)}$ and $x \in \operatorname{dom}(u)$.

(a) Show that there are elements $u \in V^{(B)}$ and $x \in \text{dom}(u)$ such that u(x) is strictly less than $[x \in u]$.

The elements $v \in V^{(B)}$, such that $v(y) = \llbracket y \in v \rrbracket$ for all $y \in \text{dom}(v)$ are called *extensional*.

(b) Let $u \in V^{(B)}$ and let $v = \{\langle x, [x \in u] \rangle \mid x \in \operatorname{dom}(u)\} \in V^{(B)}$. Show that v is extensional with [u = v] = 1.