Seminar on Set Theory

Hand-in Lecture 4

October 12, 2015

Note: The footnote was previously incorrect.

Assignment 1. Let B be a Boolean algebra and F be a principal, $\mathcal{P}(B)$ -complete ultrafilter on B.¹ Define

$$\pi(a) = \{ \pi(x) : x \in dom(a), a(x) \in F \}.$$

Prove that for any $a, b \in V^{(B)}$,

$$[a \in b]^B \in F \text{ iff } \pi(a) \in \pi(b)$$
(1)

$$[a = b]^B \in F \text{ iff } \pi(a) = \pi(b).$$
 (2)

Formulating a (working) induction hypothesis is worth 1 point. Each direction of statements 1 and 2 is worth 1.5 points.

Assignment 2. Let α be an ordinal and for every $\xi < \alpha$, let $b_{\xi} \in B$, where B is a complete Boolean algebra. For each $\xi < \alpha$, we define

$$a_{\xi} = b_{\xi} \wedge \left(\bigvee_{\eta < \xi} b_{\eta}\right)^{*}.$$

Show that

$$\bigvee_{\xi < \alpha} a_{\xi} = \bigvee_{\xi < \alpha} b_{\xi}.$$

This assignment is worth a total of 3 points.

That is, for any $U \subset B$, if $\bigvee U \in F$ then $u \in F$ for some $u \in U$.