Seminar on Set Theory Hand-in Exercise 5

Exercise 1

(i) [2 points] Without using the axiom of choice, prove that there is an ordinal α such that

$$
\bigvee_{y \in V^{(B)}} \llbracket \phi(y) \rrbracket=\bigvee_{y \in V_{\alpha}^{(B)}} \llbracket \phi(y) \rrbracket
$$

Hint: You only need to use the axiom of replacement on V and the fact that B is a set.
(ii) [1 point] Now prove (still without AC) that for any set $u \subseteq V^{(B)}$ there is an ordinal α such that for all $x \in u$:

$$
\bigvee_{y \in V^{(B)}} \llbracket \phi(x, y) \rrbracket=\bigvee_{y \in V_{\alpha}^{(B)}} \llbracket \phi(x, y) \rrbracket
$$

Exercise 2

Let $u \in V^{(B)}$ such that $u(x)=1$ for all $x \in \operatorname{dom}(u)$, and define $w \in V^{(B)}$ by $w=B^{\operatorname{dom}(u)} \times\{1\}$.
(i) [1 point $]$ Why does $\llbracket \forall x[x \in w \leftrightarrow x \subseteq u\rfloor \rrbracket=1$ hold?

Now for $u \in V^{(B)}$ freely, define $w \in V^{(B)}$ by $w=B^{\operatorname{dom}(u)} \times\{1\}$.
(ii) [1 point] Give an example for u and B such that $\llbracket \forall x[x \in w \leftrightarrow x \subseteq u \rrbracket \rrbracket \neq 1$.

Exercise 3

Consider $\left\langle X, \leq_{X}\right\rangle \in V^{(B)}$ such that the formula expressing that $\left\langle X, \leq_{X}\right\rangle$ is a nonempty inductive poset is true in $V^{(B)}$. Let Y be a core of X, and define the relation \leq_{Y} on Y by $y \leq_{Y} y^{\prime} \leftrightarrow \llbracket y \leq_{X} y^{\prime} \rrbracket=1$.
(i) [3 points] Show that this defines a partial order on Y.

Given an arbitrary chain C in Y, define $C^{\prime}=C \times\{1\} \in V^{(B)}$.
(ii) [2 points] Show that the formula expressing that C^{\prime} is a chain in X is true in $V^{(B)}$.

