Seminar on Set Theory

Hand-in exercise 7 November 6, 2015 (due Nov. 13)

Exercise 1. Let x and y be nonempty sets such that y contains at least two elements. Recall that C(x, y) is the set of all maps $z \to y$, with z a finite subset of x. We know that $(C(x, y), \supseteq)$ is a poset.

(a) Prove that $(C(x, y), \supseteq)$ is refined. (2 pt.)

Now let y^x be the topological space of all maps from x to y, where y^x is assigned the product topology and y is assigned the discrete topology. Let $N : C(x, y) \to \operatorname{RO}(y^x)$ be the map sending $p \in C(x, y)$ to $N(p) = \{f \in y^x \mid p \subseteq f\}$.

(b) Prove that for each p ∈ C(x, y), the set N(p) is indeed an element of RO(y^x) (i.e. that the map N is well defined) (1 pt.) and that ⟨RO(y^x), N⟩ is a Boolean completion of C(x, y). (2 pt.)

Exercise 2. Suppose that (B, e) is a Boolean completion of a certain refined poset P. Furthermore, let σ and τ be *B*-sentences and let $\phi(x)$ be a *B*-formula. Show the following:

- (a) For all $p \in P$, we have: $p \Vdash \sigma \to \tau$ if and only if $\forall q \leq p \ (q \Vdash \sigma \to q \Vdash \tau)$. (2 pt.)
- (b) For all $p \in P$, we have: $p \Vdash \forall x \ \phi(x)$ if and only if $\forall u \in V^{(B)}$ $(p \Vdash \phi(u))$. (1 pt.)
- (c) For all $p \in P$ and $a \in V$, we have: $p \Vdash \forall x \in \hat{a} \phi(x)$ if and only if $\forall x \in a \ (p \Vdash \phi(\hat{x}))$. (1 pt.)
- (d) If $p \Vdash \sigma$ for all $p \in P$, then $\llbracket \sigma \rrbracket^B = 1$. (1 pt.)

For this exercise, you are allowed to use all properties of forcing that were proven during the lecture. In particular, you may use properties (i)-(vi) from the hand-out.