Seminar on Set Theory

HAND-IN EXERCISE 8

November 26, 2015

1 Cardinality of Topological Basis

Let I be a set with cardinality \aleph_{α} . Show that the family of sets of the form

$$\{f \in 2^I \mid f(i_1) = a_1, \dots, f(i_n) = a_n\},\$$

where $i_1, \ldots, i_n \in I$ and $a_1, \ldots, a_n \in 2$ also has cardinality \aleph_{α} . (4 pt.) Hint: You may use that if κ and λ are cardinals such that either κ or λ is infinite and both are non-zero, then $\kappa \times \lambda = \max{\{\kappa, \lambda\}}$.

2 Another Relative Consistency Result

Let κ be an infinite cardinal and $B = \operatorname{RO}(2^{\omega \times \omega_2})$. Denote the cardinality of B by λ .

(a) Use 1.48 and Lemma 1.52 to show that $V^{(B)} \models |\mathcal{P}\hat{\kappa}| \leq |\widehat{\lambda^{\kappa}}|$. (2 pt.)

(b) Assume the GCH. Use Corollary 2.11 and (a) to show that

$$V^{(B)} \models 2^{\aleph_1} = \aleph_2.$$

(4 pt.)

(c) Assume the GCH. In this exercise, you may use (without proof) that

$$V^{(B)} \models \forall \alpha \ge \hat{\lambda} \, (\operatorname{Card}(\alpha) \to 2^{\alpha} = \alpha^+).$$

Use this and Theorem 2.12 to show that

$$V^{(B)} \models 2^{\aleph_0} = \aleph_2 + \forall \kappa \ge \aleph_1 \, (2^\kappa = \kappa^+).$$

(3 pt.)

(d) Prove that if ZF is consistent, then so is

$$\operatorname{ZFC} + 2^{\aleph_0} = \aleph_2 + \forall \kappa \ge \aleph_1 \, (2^{\kappa} = \kappa^+).$$

Be explicit in your use of Theorem 1.19. (2 pt.)

3 Some details about an action on $V^{(B)}$

In this exercise you will prove some omitted details from the proof of Theorem 3.3. Define the map $\langle g, u \rangle \mapsto gu : G \times V^{(B)} \to V^{(B)}$ by recursion on the well-founded relation $y \in \operatorname{dom}(x)$ via

$$gu = \{ \langle gx, g \cdot u(x) \rangle : x \in \operatorname{dom}(u) \}.$$

(a) Prove that

$$g \cdot \llbracket u \in v \rrbracket = \llbracket gu \in gv \rrbracket$$

and

$$g \cdot \llbracket u = v \rrbracket = \llbracket gu = gv \rrbracket.$$

(2 pt.)

(b) Prove Theorem 3.3 (ii): $g\hat{v} = \hat{v}$ for any $v \in V$. (3 pt.)