Seminar on Set Theory

Hand-in exercise 9

Exercise 1

(a) Let $h: B \rightarrow B^{\prime}$ be a bijective homomorphism between Boolean algebras and denote its inverse by g. Show that $g: B^{\prime} \rightarrow B$ is a homomorphism. (You may use the equivalent conditions mentioned on the top of page 10 in Bell.) (1.5 points.)

Recall that if B and B^{\prime} are Boolean algebras, a homomorphism $h: B \rightarrow B^{\prime}$ is complete if, for any $X \subseteq B$ such that $\bigvee X$ exists in $B, \bigvee\{h(x) \mid x \in X\}$ exists in B^{\prime} and equals $h(\bigvee X)$.
(b) Let $\pi: B \rightarrow B$ be an automorphism of the Boolean algebra B. Show that π is a complete homomorphism. (1.5 points.)
(c) Let B be a complete Boolean algebra. Show that B is homogeneous if and only if for each $x \neq 0, y \neq 0$ in B there is $\pi \in \operatorname{Aut}(B)$ such that $x \wedge \pi y \neq 0$. (Consider $\bigvee\{\pi y \mid \pi \in \operatorname{Aut}(B)\}$.) (2 points)

Exercise 2

(a) Let G be a group acting on a Boolean algebra B, and let Γ be a filter of subgroups of G.

Now prove that $V^{(\Gamma)} \subseteq V^{(B)} .(0.5$ points.)
(b) Let G be a group acting on a Boolean algebra B, with a non-invariant object $r \in B$, and let Γ be a filter of subgroups of G with the property $\operatorname{stab}(r)=\{g \in G \mid g r=r\} \notin \Gamma$.
Now prove that $V^{(\Gamma)} \neq V^{(B)}$. (0.5 points.)
(c) Let G be a group acting on a Boolean algebra B, and let Γ be a filter of subgroups of G.

Show that if $B^{\prime} \subset B$ with $\bigcap_{b \in B^{\prime}} \operatorname{stab}(b) \in \Gamma$ such that B^{\prime} is maximal(under inclusion) with this property, then B^{\prime} is a Boolean algebra and $V^{\left(B^{\prime}\right)} \subseteq V^{(\Gamma)}$. (2 points.)

Exercise 3

This exercise will be about proving that $V^{(\Gamma)}$ makes the axiom of replacement and union true, by constructing elements similar as used in the proof of lemma 1.37 and 1.38 , and showing that they are elements of $V^{(\Gamma)}$.
So let G be a group acting on a Boolean algebra B, and let Γ be a normal filter of subgroups of G.
(a) For $u \in V^{(\Gamma)}$, define v by $\operatorname{dom}(v)=\bigcup\{\operatorname{dom}(y) \mid y \in \operatorname{dom}(u)\}$ and $v(x)=\llbracket \exists y \in u\left[x \in y \rrbracket \rrbracket \rrbracket^{\Gamma}\right.$.

Now show that $v \in V^{(\Gamma)}$ by showing $\operatorname{stab}(u) \subseteq \operatorname{stab}(v)$. (1 point.)
(b) For $u \in V^{(\Gamma)}$, define v by $\operatorname{dom}(v)=B^{\operatorname{dom}(u)} \cap V^{(\Gamma)}$ and $v(x)=\llbracket \exists y \in u[x \in y] \rrbracket^{\Gamma}$.

Now show that $v \in V^{(\Gamma)}$ by showing $\operatorname{stab}(u) \subseteq \operatorname{stab}(v)$. (1 point.)

