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The purpose of these lectures is to present some applications of topological methods in
mathematical logic. Here ‘topology’ is interpreted in the wide sense of the Grothendieck
school, 5o as to include the theory of Grothendieck topologies, of sheaves and of topoi.

In the first lecture, I present an outline of the basic facts of sheaf theory. This material
is quite standard, and goes back to Grothendieck et. al. (SGA4). I have tried not to
present more than what is motivated by the applications which follow.

In the second lecture, I present the interpretation of higher order logic in sheaf cate-
gories, via forcing. This type of forcing generalizes some of the well-known forcing tech-
niques such as those of Cohen (1966) and Kripke (1965). In the generality presented here,
it is primarily due to A. Joyal, and is often called “Kripke-Joyal semantics”.

In the next two lectures, I consider two special cases of this interpretation. First, I
present Freyd’s proof of the independence of the axiom of choice (Freyd (1980)), and next
I present what seems to me to be the smoothest proof of the consistency with repect to
higher order intuitionistic logic of the continuity of all functions from the reals to the reals.
Lectures [I-IV are essentially taken from my forthcoming book with S. MacLane.

In the fifth and last lecture, I will use sheaf theory to give a “semantical” proof (due
again to A. Joyal) of the fact that in intuitionistic logic, every definable function R — R is
provably continuous. Finally, I will conclude with a sheaf theoretic proof that there are no
definable non-principal ultrafilters in ZFC (or in classical higher order logic with choice).

There are now several introductions to topos theory available which are written for a
logical audience, e.g. Lambek-Scott (1986), Bell (1989). Apart from SGA4, the principal
reference work in the field remains Johnstone’s comprehensive exposition (1977). However,
this book might be a little hard-going for readers with a background primarily in logic
(and some of the many logical applications contained in Johnstone’s book are perhaps not
immediately recognized as such).

In a short course like the present one, it is always hard to find a balance between the
general theory and the concrete examples. I have tried to focus on the applications, rather
than to develop a lot of abstract theory. A number of applications are presented which
seem basic, but are not included in the text books just mentioned. Naturally, this course
represents only a tip of the iceberg, and I have not even mentioned ‘standard’ applications
such as the theory of geometric logic and ‘generic models’ (Makkai-Reyes (1977)), synthetic




differential geometry (Kock {1981), Moerdijk-Reyes (1987)), or the intriguing connection
between Kleene realizability and topos theory (Hyland (1982), (1988)). Nevertheless, I
hope that this short survey does demonstrate that logic and geometry are intimately re-
lated.

Utrecht, July 1990, I.M.
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Lecture I: Grothendieck topologies and sheaves.

§1. Grothendieck topologies.
In what follows, C will denote a small category; C° is the corresponding opposite cat-

egory.
1.1. Presheaves. A presheaf on C is a functor

P C% = Sets. ,

r —

Thus P is given by a syétem of sets P(C) (where C is any object from C), together with
a function P(f) for any morphism f: D — C in C:

P(f): P(C)— P(D)yz— P(f)(z)=z - f==z|f,
in such a way that the following identities hold:

(z-f)-9 = z-(fg)

T 1id

(forany z € P(C),f: D — C,g: E — D).
A morphism (or natural transformation) 7 : P — () between presheaves P and Q on C
is a system of functions

¢ : P(C)—- Q(C) (CeC)
such that for any f : D — C and any z € P(C),
o{z - f) = 7c(z) - f.

The presheaves on C and the morphisms between them form a category, denoted Sets€”.
The set of morphisms from P to @ is denoted Hom(P, Q).

1.2 Representable presheaves. Each object A of C gives rise to a presheaf
y(A) = C(-, A)

defined by
¥(A)(C) = C(C,A) = the set of arrows C — A in C.

For an arrow f: D — C in C, the restriction y(A)(C) — y(A)(D) is given by composition:
for any g € y(A)(C) we have (y{A)(f))(g) = gof. Anarrow h: A — B yields a morphism
of presheaves

y(h): y(A) — y(B),




defined again by composition. In this way, ¥ becomes a functor C — Sets€”, called the
Yoneda embedding.

Yoneda lemma. For any presheaf P, there is a natural bijection Hom (y(A), P) = P(A),
for any A€ C.

Proof. The bijection associates to a morphism 7 : y(A) — P the element 74(id) € P(A),
where id € y(A)(A) is the identity on A.

1.3 Subpresheaves. A subpresheaf of a presheaf P is a presheaf S such that S(C) C P(C)
for each object C in C, and such that the restrictions of § are those of P (i.e. P(f)(z) =

S(f)Nz) for f: D — C and z € S(C)). Let Subp(P) denote the set of subpresheaves on
P.If r: Q — P is a morphism of presheaves, 7 induces an operation

771 Subp(P) — Subp(@)
by
TH8)C) = 751(S(C)) = {z € Q(C) | 70(x) € S(C)).

1.4 Sieves. A sieve on an object C of C is by definition a subpresheaf S of the repre-
sentable presheaf y(C). Notice that we may also view S as a collection of arrows into C,
with the property that if f: D — C is in this collection, then so is f o g for any arrow g
with codomain f. (I will use both points of view without distinguishing them notationally.)

1.5 Grothendieck topologies. A Grothendieck topology on C assigns to each object C
a collection of sieves J(C) on C, such that

() y¥(C) e J(C); (y{C) is subpresheaf of itself)

i) ilg: B— Candge J(C), then y(g)~'(S) € J(D);

(i) for any sieve R on C, if there exists an S € J(C} such that for any arrow (g: B—
(') € S we have y(g)~1(R) € J(B), then also R € J(C).

The sieves in J(C) are called covers of C; (ii) is called the stability axiom, and (ii1)
the transitivity axiom. A site is a pair (C, J) where J is a Grothendieck topology on the
category C.

Perhaps the principal example to keep in mind is the following. Let X be a topological
“pace. and let O(X) be the collection of open subsets of X. Make O(X) into a category,
with exactly one arrow U/ - V iff U C V. For a sjeve SonlUe€OR), say Se JU) iff
UsulWcU|(w - U) € S}. This defined a Grothendieck topology J on O(X).

A list of further examples occures in §11.2 below.

i2. Sheaves,
In this section, (C, J) is a fixed site.

ey e




2.1 Definition of sheaf. Let F be a presheaf on C. F is called a sheaf (for J) if
for any object C' of C and any cover S € J(C), any morphism 7 : § — F can be uniquely
extended to a morphism 7/ : y(C) — F, as in

S = y(C)
Til/ T/
F

So a sheaf is a special kind of presheaf. A morphism between sheaves is a morphism as
defined for presheaves; Hom (F, G) again denotes the set of morphisms from a sheaf F to
another one G. Thus we have a category Sh(C,J) of sheaves on C (a full subcategory
Setst”).

By definition, a Grothendieck topos is a category of the form Sh(C, J) for some site
(€, J).

2.2 The one-point sheaf. The presheaf 1 € Sets¢™® defined by 1(C) = {x} (some
one-point set) is a sheaf. It is characterized by the property that for any sheaf F, there is
exactly one morphism F' — 1 (i.e. 1 is a terminal object of Sh(C,J); CWM p 20).

2.3 Products of sheaves. Let P and @ be presheaves on C and form thejr “point-
wise” product P x Q, i.e.

(P> Q)(C) = P(C) x Q(C)

with the evident restrictions. This presheaf P x Q is the product in the category Sets¢”
(CWM p 69): there are projection morphisms

PEPxQRQ,

and for any other presheaf R and any morphisms o : R — P,B: R — @Q there is exactly one
morphism (a, ) : R — P x Q such that mi(a, B) = a and my(e, B) = 8. It follows immedi-
ately that if P and Q are sheaves then so is P x Q. So Sh(C,J) is a category with products.

2.4 Function sheaves. Again, we first consider presheaves P and (). There is a presheaf
QF defined by

Q"(C) = Hom(y(C) x P,Q);

for f: D — C the restriction QP(f) : QP(C) — QP(D) sends a morphism a : yC)x P —
¢ to the composition

yD)x P2 ey x P 2, g,

This presheaf QF is characterized by the fact that for any other presheaf R, there is a
natural bijection between sets of morphisms

9
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Hom(R, Q7) = Hom(P x R, Q).
For R = Q”, the identity on the left corresponds to a morphism
ev: PxQF - Q (1)
called evaluation; explicitly, for C € C,z € P(C) and (a :¥(C)x P — Q) e QP(C),
eve(z,a) = aclid, z) € Q(C).

(It follows by naturality that the bijection (1) sends = : R — QF to the composite ev o
(idx7): PxR—Q.)

Although a little harder than for products, one can check that if P and @ are sheaves
then so is @QF. For sheaves P and Q, we call QF the function sheaf, or exponential It
follows that Sh(C,J) is a cartesian closed category (CWM p 95).

2.5 Subsheaves. Let P be a presheaf on C, and let U C P be a subpresheaf (as in
1.3). Wecall U closed (with respect to J) if for any object C of C and any cover S € J(C),
for any commutative square as below there exists a (necessarily unique) diagonal morphism
such that both triangles commute:

S S U

A
ll,’l
yc) - P

One can spell this out via the Yoneda lemma, and get the following equivalent description:
" C P is closed iff for any C € C,and any S € J(C) and z € P(C), if for every arrow
9 € 5 it holds that z - ¢ € U(dom(g)), then z € U. (Informally, any element of P which is
“locally™ in U, is in U.) One readily verifies:

Lemma. Let P o sheaf, and let U C P be q subpresheaf. Then U is closed iff U is
tself a sheaf. (U is then called a subsheaf of P.)

For a sheaf F, we denote by Sub(F) the collection of subsheaves of F. If 7: F — G is
4 morphism of (pre)sheaves, then clearly for a closed subpresheaf U C G, the subpresheaf
U} C F (as defined in 1.3) is again closed. In other words, the operation 77! on
subpresheaves restricts to an operation on subsheaves:

771 : Sub(G) — Sub(F).

:!'or a sheaf F', Sub(F) has a great deal of structure which we will not go into here; e.g. it
s always a complete Heyting algebra.}

2.6 Powersheaves. For a sheaf F, we can define a powersheaf P(F) which plays the
role of the power set. Let for an object C € C,

7




P(F)(C) = CSubp(y(C) x F)= the set of closed subpresheaves of y(C) x F. (1)

For an arrow f : D — C in C, the restriction P(F)(f) : P(F)(C) » P(F)(D) sends a
closed subpresheaf C y(C) x F to the inverse image subpresheaf (y(f) x id)~!(U), where
y(f) xid: y(D) x F — y(C) x F; this inverse image is again closed.

" The presheaf P(F) is characterized by a universal property: For any presheaf R, there
is a natural bijection

Hom(R, P(F)) = CSubp(R x F). (2)

Using this bijection, one readily shows that P(F) is a sheaf if F is — it is called the
powersheaf of F. Among sheaves R and F, we can rewrite the bijection (2) as

Hom(R, P(F)) = Sub(R x F), (3)

by the lemma in 2.5. As with exponentials, this bijection is completely determined by
what it does to the identity for the special case where R = P(F}: one gets a subsheaf

ECPF)x F (4)

which is the ‘membership relation’: For C € C,z € F(C) and U € P(F)(C), that is
U Cy(C) x F closed, we have

(U,z) € E(C)iff (idc,z) € U(C). (5)

2.7 Other limits. Pullback and equalizers (CWM p 70,71) of sheaves are constructed
pointwise (as products, see 2.3). For example,if r: G — Fando: H — F are morphisms
of sheaves then we can define a presheaf G x r H by

(G xp H)(C) = {(z,9) | = € G(C),y € H(C), 7c(x) = ac(y)},

with evident restrictions. It is easily seen that G Xr H is a sheaf (assuming F,G, H are
sheaves). Indeed, this follows from the fact that G Xr H is characterized by a universal

property of the projections G - G xr H 2% H: for any two morphisms G <&~ K Y4 H
from some (pre)sheaf K, if 7¢ = o1 then there is a unique ¥ : K — G xg H with
MX =@, m2x = ¢ (cf. CWM p 71).

2.8 The zero-sheaf. Suppose F is a sheaf and C is an object of C such that § € J(C).
Then the unique map of presheaves § — F must have a unique extension y(C) — F. By
the Yoneda lemma, this means that F(C) is a set with exactly one element. It follows that

in general, the empty presheaf @ is not a sheaf. Nonetheless, there is a smallest sheaf 0,
defined by

0(C) ={ {*}, if 0 e J(C)

f, otherwise.



Restrictions 0(C) — 0(D) for f : D — C are defined because by the stability axiom,
8 € J(C) implies § € J(D). The sheaf 0 is called the zero-sheaf; it is an initial object of
Sh(C,J) (cf. CWM p 20).

2.9 Sums of sheaves. Let {F, : i ¢ I} be a collection of sheaves. Their sum (or
coproduct) 3 F; is to be a sheaf, together with morphisms o; : F; — 3" F; (for each j € T},
having the following universal property: given any sheaf G and any family of morphisms
8;: F; = G(j € I), there is a unique morphism 6 : 2 Fi = G with 6o; = 9, for all ;.

Define 3 F; as follows. For C € €, elements of (X F;)(C) are equivalence classes [a]
of families of morphisms a = {ei : 8 = F}icr, where for each & € 1,5 — y(C) is a
sieve on C such that US; € J(C), and whenever i # j the sieves S; and S; are “disjoint”,
in the sense that if an arrow h : D — belongs to S; N S; then ® € J(D). Two such
{o,: S = F}and {8 : T, » F:} are equivalent of there exist sieves R; C 5;N T, such
that UR; covers C and g | R; = B; | R; for each i € I.

If f: D — Cis a morphism and o] € (¥ Fi)(C), then the restriction [a] - f is
represented by the family of maps S (ai) 1 y(f)~US:) — F, induced by the o, as in

YD) €= y(f)71(S)

y(f)l | ws)
y(C) €«—> &, — F.

—

The ‘universal’ morphism o, : F; — T F. sends an element gz € F;(C) to the class of
the family {a; : S5; - F;} where S, = 0 if 5 # J, and §; = y(C) while a, : y(C) — F,
corresponds to z via the Yoneda lemma.

One readily verifies that 3" F, is a sheaf with the univeral property as stated.

Notice also the following distributive law, for a sheaf G and a family of sheaves F;:

GXZE%"Z(GXF,)

2.10 Constant sheaves. For a set I, the sum of the family of sheaves {1 | i € I} of

I-many copies of 1 is denoted by A(7), and called the constant sheaf corresponding to the
set [:

AI:ZI.

i€l

For any sheaf F, write I'F = Hom (1, F). The universal property of the sum then yields
a natural bijection

Hom(A(7), F) = Hom (1,TF)

‘on the right, Hom is just the set of function). In other words, A is left adjoint to T (CWM

p).




Lecture II: Logic.

§1. Forcing.
Throughout this section, (C, J) is a fixed site,

1.1 Language. Let us fix a language £ for many-sorted predicate logic. Recall that
L is given by the following data: a set of sorts (or types) A, B, .. etc; with each sort A
infinitely many variables z4,y4, .. (I shall usually drop the A on the variables, and/or write
Vz € Ap for Vz40.) Furthermore the language has a set of constants ¢, functions f and
relations R; each constant ¢ = ¢4 has a sort A assigned to it; with each function we are
given its number of argument n say), the sort of each of these arguments (say A,,..., A4,
respectively) and the sort of its values (say B) — I abbreviate this as

f:Alx...xAn—»B.

Finally, each relation R is given with its number of arguments and the sorts of these
arguments, say A, ..., A, — we write

RC A x..xA,.

Terms and formulas are built up in the usual way.

1.2 Interpretation. A model M of L (over the site (C,J)) is given by the following
data (besides the site (C,J)):

¢ for each sort A a sheaf AM
o for each constant ¢ of sort A an arrow eM ;| — AM

o for each function f: A, x... x An ~ B a morphism of sheaves fM:iAMx .. x AM -
BM

¢ for each relation R C A1 X ... x A, a subsheaf RM CAMx .. x AM.

By induction, one now defines for a term Hz1,...,2,) of sort B with free variables z, of
sort A;, an arrow

tM:A'lMx...xAnM—-rBM
in the standard way:
® if t = 2 is a variable, tM is the projection AM x ... x AM _, AM
* if t = ¢! is a constant, tM js the given M1 o AM

o ift = f(tl(:cl,...,:c,,),‘..,tm(:c],...,:cn)) and tM : AM x . x AM — BM has been
defined, then tM is the composite
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<M M
AM x X AM S BMx..x BM X, pm

Convention: from now on, I will often delete the superscript M.
Next, one defines by induction the forcing relation

C I+ 99(01, '"’aﬂ)

where C is an object from the site C, w(z1,...,2,) is a formula with free variables (among)
z, of sort A;, and A; is an element of A;/(C) = AM(C). The clauses for atomic formulas
are

Cl Rti(ar, ..., an), .., tmfay, ..., ap)) iff (t)e(ar, .., ap), .., (tXc(ar, ..., an)) € RM(C).
Cl ty(ay,...,a,) = ta(ay, ..., a,) iff (tM)e(ay, v @) = () e(ay, ey Gp).

Furthermore,
Cl@Aplay,..,a) iff CIF p(a, w1n) and C I y(ay, ..., a,)

ClF o Vip(ay,...,a,) iff there is a cover § € J(C) such that for any arrow , ,

I I £ I

9:D - Cin§ DI pla "9s-san - g) or D - p(a, "Gy p - g). foseté

“CrL g € J(C)
Cl-~¢iff CIF (¢ —1)
Cl+Vy € By(a,, ..., an,y) iff for any arrow g: D o ¢ and any b€ BM(D),
Di-o(ba;-g,...,a,- g).
C I+ 3y € By(a,, «y @n, ¥} iff there is a cover § ¢ J(C) such that for any arrow
9:D — Cin S there is some b, € B(D) with D I+ ©(bg,a1-g,...,a, - g).

1.3 Basic properties. By induction on @, one easily verifies:

Lemma, The forcing relation has the Jollowing two properties:

¥ (monotonicity) IfC I oay, @y} then D IF wla;-g, -y @n-g) for any arrowg : D — (',
1) (local character) If there ezists g cover S € J(C) such that D |- w(ar - g,...,an- g} for
"y (9:D— C)e S, then also C I- wl(ay,...,an).

Consider for w{z1,..,2,) as above and ¢ € C the subset

{(xla--wmn) | @}M(C) =4t {(a1,..,a4) | a, € Ai(C) and C I+ ¢(q,, vy ln)}.
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Then (i) of the lemma says that {(z,, - Zn) | @} is a subpresheaf of 4, x ... x Ap, while
(ii} says that in fact it is a subsheaf (cf. 1.2.5). Thus any formula defines a subsheaf by
“comprehension”. Notice that if ¢ doesn’t have any free variables, then {- | ¢}Mis a
subsheaf of the empty product 1.

A formula ¢ is said to be valid in the model M over (C,J), notation M = o, if for any
object C' of C and any g, € Ai(C), C I p(ay,...,a,). When M is understood (or when M is
the standard interpretation, cf. 1.5 below), I also write SA(C, J) E ¢, rather than M = .

Soundness theorem. All formulas provable in many-sorted intuitionistic predicate logic
are valid in any model M over a site (C,J).

There is also a completeness theorem, see II. 2.1 below. (For a list of axioms for in-
tuitionistic predicate logic see e.g, Boileau-Joyal (1981), Kleene (1952), Dummett (1977).
There are some subtleties involved when one doesn’t assume sorts to be inhabited, but I
don’t go'into this here.)

1.4 Higher order logic (or intuitionistic type theory). This is many-sorted intuitionistic
predicate logic, with some additional structure on the collection of sorts. For instance, one
requires the existence of (i) finite products; i.e. a sort 1 (the empty product), and for any
sorts A and B a product sort Ax B, together with projection functions P1:AXB — Aand
p2: AX B — B. (ii) For any two sorts A and B there is a function-sort BA, together with
an evaluation functionev: Ax BA — B. (ii1) For any sort A there is a power-sort PA,
which comes with a membership relation E C PA x A. (As usual, I write t(s) for ev(s,t)
and t € s for E(s,t).) There are axioms (in addition to those of first-order intuitionistic
logic) which ensure that these constructions have their intended meaning:

(1is a singleton) 3z € 1(z = z)

(pairing) Vz € AVye B3z € A x B(mz=2zApyz =y)

(function — comprehension) Vz € A3y € Bo(z,y) — 3f € BAvVz ¢ Ap(z, f(z))
(set — comprehension) 3!z € PAVY € Ay € z = o(y)).

(In these axioms,  may have additiona] free variables. Recall that while y € z abbreviates
E(z.y),Vz € A is just a formal device to indicate that z is a variabele of sort A. One
often writes * for the unique z in the first axiom, < z,y > for the unique z in the second
axiom, {y € A | ¢(y)} for the unique z in the last axiom.)

A (standard) interpretation of type theory over a site (C, J) is given by an operation
M as before, which “preserves” the structure on the types. Thus (A x B)M is the sheaf
product 4M x BM and (p,)M are the projections; and 1™ = 1. Furthermore (BA)YM is the
exponential (BM)4™ of 1. 2.4 while ev™ js the evaluation morphism. Finally (PAWM =
P(AM), the powersheaf of I. 2.6, while EM is the membership-subsheaf as defined there.

For the standard interpretation, there is a soundness theorem for intuitionistic higher
order logic (its proof is routine).
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1.5 Arithmetic. Peano arithmetic (PA) denotes some standard version of classical first
order arithmetic; Heyting arithmetic (HA) is its intuitionistic counterpart. Higher order
Heyting arithmetic (HH A) is higher order intuitionjstic logic as in 1.4, with in addition
a distinguished sort N (for the natural numbers), a constant 0 of type N (zero), and a
successor function (- +1) : N — N, together with the usual axioms for (intuitionistic)
arithmetic, including full higher order induction YU € PNO€E UAVn € NnelU -
n+1 €U)—VYne N(nel)). Thestandard interpretation of HHA is the standard inter-
pretation as above, such that in addition NM = A(N), the constant sheaf corresponding
to the set of integers (cf. I 2.10). This interpretation is sound (but not complete, see 2.6
below).

1.6 (Intuitionistic) set theory (cf. Fourman (1980)). IZF denotes Zermelo-Fraenkel
set theory with intuitionistic logic (for a list of axioms see Fourman, loc. cit.). IZF differs
from HH A in many respects: IZF has no types (there is only one “improper” type, the
universe V) and has unbounded quantification. Nonetheless, any site (C, J) gives rise to
a sheaf model of IZF in a standard way, closely related to the standard interpretation of
{1H A, This model is obtained by imitating the construction of the cummulative hierarchy
m 5h(C, J): For each ordinal a we define a sheaf Vo on (C, J), as

Vo =0 (zero — sheaf)
Vo1 = P(V,)  (power — sheaf)
W= ]i_r:n a<aiVe (X a limit ordinal)

Here lim is the colimit in the category of sheaves, which I haven’t described explicitly.
There is no sheaf V = u_V, (unless we allow “class-valued” sheaves). Roughly, one can
“ow proceed as follows: add infinite conjunction to HH A (with the obvious rule for forc-
tg|. and define a translation from set theory into this extension of HHA, with the V,’s as
"spes. (A first approximation is that an 1Z F-formula Vzy(z) translates into A Vz© € Vi
- "): this simple idea has to be adapted somewhat for nested quantifiers.) Using this
'tanslation, one can now define forcing and validity for set theory in terms of forcing and
aldity for (extended) H HA. This yields a sound interpretation of 7ZF. I will not discuss
“irther details. As a rule of thumb: any independence proof for HH A is also an indepen-

hice proof for IZF, as long as all the interpretations of the types involved are contained
tsome 1.

1.7 Classical logic. Many sheaf categories Sh(C, J) have the additional property that
it standard interpretation is sound for classical logic, so that one gets models for classical

chier order logic and classical ZF. Classical higher order logic is H H A with an additional
»iom for the “excluded middle”:

VPE’P(I){tePVﬂ(*Gp)) (1)
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The most frequently occurring case in which the axiom of the excluded middle is valid s
that of the dense topology or double negation topology J = =, This topology is defined,
for C€C,and § C ¥(C}, by: S € ~=(C) iff for any arrow f 1 D — C there exists an
arrow g : E — D such that fg € S(E).

Proposition. Any standard interpretation in Sh(C, —-) is classical,
(Indeed, one easily verifies that (1) is valid in Sh(C, —-n).)

§2. Examples.
In this section I review very briefly how sheaf models generalize some well-known types
of semanties.

2.1 Kripke models (Kripke (1966)). Let J = triv be the trivial topology on a cate-
gory C, where the only cover § —» ¥(C) of C is ¥(C) itself. Then every presheaf is a
sheaf:

Sh(C, triv) = Setst”.

For this special topology, the forcing clauses for disjunction and existential quantification
can be simplified. For instance (omitting free variables from notation)

Cll—gngbifTCll—gporCH-t,b.

In this way, one obtains a description of forcing equivalent to that of Kripke (loc. cit.).
Notice that Kripke in fact considered more special models: for the category C he took a

2.2 Beth-models (Beth {1956)). Consider the set N<N of finite sequences u of natuy-
ral numbers. Write u < v if u is an extension of v. A subtree T C N<N j5 5 collection
of such sequences containing the empty sequence < > and closed under intial segments
(v2>u e T implies v € T). The poset (T, <) can be viewed as a category, cf. 2.1. A path
in T is a function o : N — N such that (a{0),...,a(n)) € T for everyn 2 0. Ifue?T
and (a(0), ~wa(n)} = u for some n then we say that a goes through u. A bar for ueT
is a set B C T of extensions of u such that every path in T which goes through u also
goes through some v € B. Define & Grothendieck topology J = Beth on the category T
by setting for each v € T and each S C y(u),

S € Beth (u) & there is a bar B for u such that (v — u) € Sfor eachv € B,

The resulting sheaf sernanties is exactly that of Beth (who in fact only considered constant
sheaves on T, cf. 1. 2.10).
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2.3 Boolean-valued models. Let B = (B,<,A,V,0,1) be a complete Boolean alge-
bra (¢Ba). B is a poset, hence a category. Define a Grothendieck topology J on B, called
the supremum-topology by

SeJb)if b=\/{ce B|(c—b)e S},

for any b € B and any sieve § on b. Sheaf semantics over the site (B,J) is essentially
equivalent to the theory of Boolean-valued models.

If P is a poset, equipped with the —-topology (cf. II 1.7), then the subsheaves of
1 € Sh(P,-~) form a cBa B, and

Sh(P,-~~) = Sh(B,sup)

where sup is the supremum-topology on B. This explains the correspondence between
Cohen-type forcing and Boolean-valued models.

2.4 Heyting-valued models. A complete Heyting algebra (cHa) is a distributive com-
plete lattice A = (A4, <, A, V, 0, 1) for which in addition, the infinite distributive law

eAVbi=\anb (1)
ied i€l

holds. Implication = is then defined as a = b = Viz € A|zAa < b} Here A is
a poset, hence a category, and we can define a supremum-topology on A exactly as for
cBa’s. (The identity (1) corresponds precisely to the stability axiom for a Grothendieck
topology.) The resulting semantics is the semantics of “Heyting-valued sets”. The phrase
“topological models” refers to the special case where A is the lattice O(X) of open subsets
of a topological space X. The sup-topology is then precisely the Grothendieck topology
on O(X) defined in I. 1.5. One generally writes

Sh(X) = Sh(O(X),sup).
Topological models go back to Scott (1968), (1970); for more on Heyting-valued models,
see Fourman-Scott (1979), Fourman-Hyland (1979), Grayson (1979), (1981), (1982).

2.5 Permutation-models. Let T be a topological space, and let G be a group act-
ing continuously on T'; that is, there is a map GxT — T,(g,t) — g-t, which is continuous
for the discrete topology on G, and satisfies the usual identities

l-t=t g-(h-t)=(gh)-t.

Consider the category Tg whose objects are the open subsets U C T, and whose arrows
U — V are elements ¢ € G with the property that g -t € V for any ¢t € UU. Define a
Grothendieck topology J on T by setting for an open subset I/ C T and a sieve § < y(U)

S€JU)MiU={g-t|(g:V ~>U)eS(V),teV}

¥
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Sh(Tg, J) is the category of so-called (G)-equivariant sheaves on 7.
For a topological group G acting on a space 7T, it is again possible to construct a site for
the G-equivariant sheaves, but the construction (explicitly described in Moerdijk (1988))

2.6 General remarks. Freyd (1979) showed that in some sense, models of the form
Sh(Rg) = (G-equivariant sheaves on A), where G is a topological group acting on a com-
plete Heyting algebra, are enough. Indeed, if (C, J) is an arbitrary site, then there exjsts
an embedding functor Sh(PC,J) — Sh(Ag), for suitable such A and G. This embed-
ding preserves all the relevant structure: products, exponentials, power-objects, etc. If
one replaces “group” by “groupoid”, then this embedding functor can be replaced by an
equivalence; see Joyal-Tierney (1984 » Joyal-Moerdijk (1990) for more precise statements.
In the latter paper, one also finds the result that for any site (C, J) there is an embedding
Sh(C,J) — Sh(A), for a suitable cHaq A, which preserves e.g. products and exponentials,
but not powersheaves.

valid in all sheaf-models. (For instance, it is a folklore fact that first order classical Peano
arithmetic is valid. Also, in sheaf-mod=ls every small complete category is a pre-order,
although this is not provable in HHA (f. CWM. p Hyland (1988).) In the context of
analysis, one has e.g. that “every Cauchy-sequence has a norm of convergence” is valid,
but not provable in HH A (Moerdijk 1982, unpublished).

In these lectures, I have not considered the more general notion of an elementary topos
i'Lawvere~Tierney). Every Grothendieck topos is an elementary topos, but not conversely.
For elementary topoi there is a trivial completeness proof, since the “term-model” of HH A
is an elementary topos, the so-called free topos (see Lambek-Scott (1986)).
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Lecture III: Freyd’s proof of the independence of the axiom of
choice

In this lecture, I shall prove the following theorem:

Theorem 1. There exists a Grothendieck topos F = Sh(F,J) and a sequence of sheaves
Ei(n € N) on F such that

(1) The logic of F is classical (cf. IL 1.7).

(il) For each n, the morphism E, — 1 is an epimorphism.

(i) The product [,en E, is isomorphic to the zero-sheaf.

(iv) Foralln, E, is (isomorphic to) a subsheaf of P(N).

(Here N = A(N) is the standard interpretation of the natural numbers in F.) By trans-
lating these categorical properties of F via the forcing definition, one obtains:

Corollary 2. The following sentence is valid in F {(for the standard interpretation of
(classical) higher order logic):

IE € P(N x PN)[Vn € N3z € PN(n,z) € E A ~(3f P(NYY Vn € N(n, f(n)) € E)]

Thus. the axiom of choice is not provable in classical type theory. Since all the objects
involved (N,P(N),P(N)N, etc.) are contained in the cummulative hierarchy, theorem 1
also implies the independence from ZF; see 1I. 1.86. (In fact for the special case of the
topos F, any object of F is contained in some V,,.)

I'have divided this lecture into three parts. The first section deals with some generalities
concerning sheaves (and is really a continuation of §1. 2). In section 2 T will give a proof
of theorem 1, and in a third section I will show how this theorem can be translated into
the independence of the axiom of choice as stated in corollary 2.

The original source for this lecture is Freyd (1980). In the references, I have also listed

A useful exposition of Freyd’s method which has recently been published by Blass and
Sredrov.

1. More sheaf theory.

1.1 Monomorphisms. In any category, an arrow f is called a monomorphism if for
¥ two arrows ¢ and k which both have the domain of f as their codomain, fg = fh
mplies g = h; of. CWM p 9. It is not difficult to prove that in the category Sh(C,J) of
“heaves on 3 site, a morphism 7 : F — G between sheaves is mono iff 7o : F(C)— G(C)
> njective for each (. (For the purpose of these lectures, one may also take this as the
definition of “monomorphism of sheaves”.)

Let {r, : F, = Gi}i be a family of monomorphisms of sheaves. There is an induced
morphism r = 3~ 7, LESYG (1 2.9), and it follows by the explicit description of
“ims given above that 7 is mono if each 7, is.
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1.2 Epimorphisms. An arrow S in some category is called an epimorphism if for any

two arrows g and A with the codomain of f as their domain, gf = hf implies g = A (cf,

CWM,p. ). For instance, in the category of sets an epimorphism is just a surjection.
It follows immediately from the universal property of sums (I. 2.9) that if , . Fi— G,

is an epimorphism of sheaves for each 1, then so is the induced morphism 7 : 3" F; — G,
Epimorphisms of sheaves can explicitly be described as follows:

Lemma. A morphism r : F G of sheaves on a site (C,J) is an epimorphism in
Sh(C,J) iff for any object C of C and any r € G(C), the sieve

S,,.={g:B-—rCIz-g=Tg(y)forsorneyeF(B)}

is a cover of C. (Recall that we identify a sieve S C Y(C) with a set of arrows into C.)
Ifr:F-Gis any morphism of sheaves, one can define a subsheaf T(F) of G, called
the image of 7, by

T(F)C)={z € G(C)| S, € J(C)}.

Then 7 factors as F' 7(F) < G, where the first arrow is an epimorphism and the second
is the inclusion of a subsheaf, If 7 is a monomorphism, then F — T(F}is an 1somorphism;
thus F is isomorphic to a subsheaf of G in this case. If r is an epimorphism then (F) =G,
by the lemma.

From the preceding lemma, one easily deduces:

Lemma. /n ¢ category Sh(C, J) of sheaves on a site, epimorphisms are stable under pull-
back; that is, fr:F 5 Gisan epimorphism then so is the projectionmy : H xq F o H,
for any morphism o : H — G.

HxgF 2, F
7"11 1"
H = G.

1.3 Infinite products. Let {Fi:i€el})bea family of sheaves on a site (C,J). Their
product [1F; is to be a sheaf, equipped with Projections p; : [ F; — F; (for each 1),
such that the following universal property holds: For any other sheaf G and any family of
morphisms 1, : G — F, there is a unique morphism 7 : G — [T1F withp,or = T

If I'is finite, we have already seen in lecture | that this product can simply be con-
structed as the pointwise product. The same simple construction works for infinite prod-

1.4 Associated sheaves. A basic theorem of sheaf theory states that the inclusion
functor

SA(C,J) — SetsC™
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has a left adjoint, denoted a. This means that for any presheaf P : C? — Sets there
is a “best approximation” of P by a sheaf. This approximation is given by a morphism
7: P — a(P), where a(P) is a sheaf; it is “best” in the sense that for any other morphism
o : P — F into a sheaf F, there is a unique 7 : gP — F with ™} = o. The general
construction of a(P) is somewhat involved, but need not detain us here, since the following
special case suffices.

A presheaf P on C is called separated if it satisfies the uniqueness part of the definition
of a sheaf; that is, for any covering sieve § — ¥(C) any map ¢ : S — P has af most one
extension y(C) — P. For a separated presheaf P, its associated sheaf a(P) can simply be
described by the formula

&(P)(C) = lim sesc) Hom (S, P). (1)

Explicitly, an element of a(P)(C) is an equivalence class of morphisms & : § — P where S
is a coverof Ci;twosucha: 8 — Pand o : §' — P are equivalent if there exist a “finer”
cover T € J(C), T C SN &, such that the restriction of & and o' to T coincide. For a
morphism f : D — C in C, the restriction a(P)(C) — a(P)(D) is defined by the stability
axiom for Grothendieck topologies: if [a] € a(P)(C) is represented by @ : S — P, then
[a] - f is represented by the dotted arrow as indicated in the following diagram:

¥(D) — y(f)~Y(S)
¥(f) !l ! N

E(C) — S 2, P

It is not hard to prove (with the transitivity axiom from 1. 1.5) that a(P) thus defined is
a sheaf.

The morphism 5 : P — a(P) is described as follows. For an object C € C and an
element z € P(C), no(z) is the equivalence class of the morphism 7 ¥(C) — P which
corresponds to z by the Yoneda lemma, (I. 1.2). The universal property of n as described
above, is immediate.

Notice that 5 : P — a(P)isa monomorphism, precisely because P is separated. The
map 7 is an isomorphism P & a(P) iff P is already a sheaf.

§2. The Freyd topos.
Let F be the category whose objects are the finite non-empty ordered sets

n=1{0,1,2,..,n} (n>0)

and whose morphisms are the retractions; that is, an arrow f:in— minF is a function
such that f(i) = i fori < m. (In particular, there are no morphisms n — m unless n > m.)
We consider the dense topology (—=-topology) on F, cf. II. 1.7. So a sieve § — y(m)

covers m iff for any arrow g : n — m in F there exists an A : k£ — n with gh € 5. 1 shall
write
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F = Sh(F,~-)

and call F the Freyd topos. For this topos F, I will now prove theorem 1.

Notation: 1 shall write P, = y(r) = Homg(—,n) for the representable presheaf cor-
responding to an object n of F, and E, = a(P,) for its associated sheaf. E, can be
constructed by (1) of IIl. 1.4 since P, is separated, as stated in the lemma below.

2.1 Lemma. The site (F, =) has the Jollowing properties:

a) Any covering sieve is non-empty.

b) Any non-empty sieve on 2 is a cover.

c) Each presheaf P, is separated; B is a sheaf (so By = Fp = 1).

d) There are only two subsheaves of By (viz. the zero-sheaf and Ey itself).

Proof. (a) If $ — y(m) is a ~—-cover, then by taking for ¢ above the identity, we
find an arrow h € S.

(b) Suppose S is a sieve ongl, and s : k — {1 is an arrow in S. Then for any other arrow
g:n —}, and for any arrows A ‘ntk—nandl:n+k -k, we have gh = s¢ € S since
S is a sieve. Thus S is a cover of i

(c} Consider a diagram

'. ' 4
S —y(m) = P,

W

such that @ o i = 1 0 i, where i is the inclusion of a covering sieve of y(m). We need to
show that ¢ = . Pick any arrow g : k — m in F, and consider the arrows wi(g) and
vi(g) i k = n. Since Sis a cover, there exists an & : £ — k with gh € S. Thus

ve(g)oh = u(gh) (natuarality of )
= ¢e(ie(gh)) (gh € S)
= Pe(2e(gh)) (i = i)
= ¢¢(gh) (¢ is inclusion)
= Ye(g)h.  (naturality of ¢)

But k is a surjection, so vk(g) = ¥x(g). Since g is arbitrary, we conclude that @ = 1.
(d)Let UC1=P =F, bea subsheaf; that is, U/ is a closed subpresheaf (cf. 1. 2.5). In
particular, if I/ contains a covering sieve S on{, then by closedness U = 1. By (b) above,
it follows that U = @ or U/ = 1.

2.2 Proposition. The unique arrow p : E, — 1 is an epimorphism, for each n > 0.

Proof. Let p(E,) C 1 be the image of p, as in 1.2 above. Then p(E.) is non-empty
since E,, is non-empty. By 2.1(d), p(E,)=1; thus E, — 1 is an epimorphism.
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2.3 Proposition. Ifn > m then E.(m)=10.

Proof. By §1.4 above, an element of En{m) is an equivalence class of morphisms 7 :
S — P,, where Sis a covering sieve of m. I claim that such a doesn’t exist, when n > m,
Suppose to the contrary that we have such a T iS5 — P,. Since S # ¢ (2.1(a)), we can
pickan s: k — m in 5. Consider

f=1(s) € Po(k), ie. f ko n.

Let g,h: k41 — k be the arrows in F with 9(k+1) =n and h(k + 1) =s(n) <m < n.
Then sg = sh. But by naturality of 7,

f9 = 16(8)g = Tisa(sh) = mi(s)h = fh.

This contradicts the fact that fea(k +1) = f(n) = n while since s(n) < n we have
Jh(k +1) = fs(n) = s(n).

2.4 Corollary. [], E, is the zero-sheaf.

Proof. If ([], E.)m) # 8, then so is Ers1(m), since there is a projection [], E, — Emi.
This contradicts 2.3.

2.5 Proposition. For each natural number n there is a monomorphism E, » P(N).

Proof. Fix n > 0. Recall that N = A(N) is the constant sheaf as described in I
2.10, and that P(N) is the corresponding powersheaf. If we can construct a morphism
#: Py — P(N) then it extends uniquely to a morphism i+ Eqn — P(N), by the universal
property of 1 P, — a(P,) = E,, since P(N} is a sheaf. It is easy to see from the explicit
description of g given in IIL 1.4 that z is mono if p is.

To construct a monomorpshism  : P, — P(N), first enumerate without repetitions
all arrows in F with codomain n, say as {gi : k € N}. Each g generates a smallest closed
subpresheaf C; of P,, as s o Lfand B £ 4

[ S
i

B
-
x

(h:m—n)e Ci(m) iff there is cover § € ==(n) such that

Vs € S3t: gt = hs. .
56, o b hinse o Iy
Now for an object m of F, the elements of P(N)(m) are the closed subpresheaves of
Jm)x N=P, x N=P, x A(N). An element of (P,, x A(N))(k) is given by an arrow
h:k—manda disjoint family of sieves Si on k such that UienS;i covers k. Now define

Ha i Pulm) — P(N)(m) = CSubp(Pn x A(N))

as follows. For an arrow f : m — 0, m(f)} is the subpresheaf of P, x A(N) given by J
i

21 ]

1




(2, {5:}) € pm(f) (&) iff for each arrow s € S, fhs € C,.

This is clearly a closed subpresheaf of P, x A(N). Two things remain to be shown: that
4 is a natural transformation, and that # 15 a monomorphism. Leaving the first statement
for the reader to verify, we conclude by proving that each Hm 1S injective.

Suppose f, ' : m — n are distinct arrows such that bm(f) = pm(f"). These arrows f, f/
occur in the enumeration, say as 95 and g;. Consider £ = (¢d, {S5:}) € (P x A(N))(m),
where S, = 0if i # j, while S; is the maximal sieve ¥(m) on m. Then clearly ¢ € B (f)(m).
On the other hand, ¢ ¢ #m(f')(m) would mean that, J' € C,, ie. that CiNCi # 0. By
2.1(a), this implies that there is at least one commutative square in F of the form

’

I S5 m

sl l—f’=:ﬂf

f'—'Q’J
m =" n

But for 7 < m we have s(i) = 7 = §'(i). Hence by commutativity fD) = f(s(3)) =
J'(s'(4)) = f'(:). This contradicts f #£ f.

§3. Logical aspects of the construction.

I will now show that corollary 2 follows from theorem 1 as stated in the beginning of
this lecture. Consider for each n € N the monomorphism Bm i Eq = P(N) of proposition
2.5. These can be summed up to give a monomorphism L E, = T, P(N). Now by the
distributive law of I. 2.9, 0 P(N) = 7, (1 x P(N)) = (2. 1) x P(N) = N x P(N). Thus
if we write £ = SSE, then the sum of the u,’s is a monomorphism

E s N x P(N). (1)

In other words, E is (isomorphic t0) a subsheaf of N x P(N).
Since each E, — 1 is epi by 2.2, 50 is the induced map £ — N (cf. 1.2); thus we have
a diagram

E ™% NxP(N)

epi epi {(2)
N

The sheaf E can be identified with an element, of P(N x P(N))(1), and we claim that for
this element,

ll-VYne NIz ¢ PN(n,z)e E (3)
LI =37 e P(N)Myn ¢ N(n, f(n)) € E). (4)
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These together yield that in the Freyd topos F » the following instance of the axiom of
choice fajls;

VEemePMMWﬁdm@eE—&ﬁMMJmnem.

Proof of (4). Suppose to the contrary that for some object k of F, and some morphism
Fryk)x N=P. x N - P(N), it holds that El-V¥ne N(n,F(r)) € E. In particular,
each natural number ; gives an element ; € N(E), and kI (3, F(i)} € E. This means that
the map

ﬂ:ﬂxﬂﬁﬂxNﬁﬂNxmm

factors through £. Hence F o (1 x 7) factors through E, » P(N) for each 1, say as 6

P T3 P(N)
N
E;

These 9, together give a map P, — IIE;, i.e. an element in (I1E;)(k). This contradicts 2.4.

Proof of (3). Let £ be any object of F, and let o € N(k),ie aisa map y(k) = P, L N.
We need to show that kElF3ze P(N)(a,z) € E. Consider the pullback square

Pk XNE - F
T I m
P 5 N

By 1.2, the projection my : P, xy E — Py is epi. By 1.2 again, this implies that ;4 € Pe(k)
is “locally” in the image of ;. Thus there is a cover § of k such that for each s:f—tkin
S there is an e € E(£) such that (s,€) € (P, xp E)(D); ie. ap(s) = (m2)e(€). But then e
is of the form e = (a0 y(s),b) where b € P(N)(¢), and ¢ I- (@oy(s),b) € E. Since § is a
cover, it follows that £ I- 3z ¢ P(N)(a,z) € E, as was to be shown.

Notice that the logic of F is classical, as a general property of the —— - topology (§II.
1.7). The theory of F is also complete, in the sense that for any formula ¢ without free

variables, either F = ¢ or F = ~p. Indeed, by 2.1 (d) the subsheaf {- ] ¥} of 1 is either
€mpty or equal to 1 jtself,
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Lecture IV: All functions are continuous

Let R be the set of Dedekind reals, definable in HHA. The purpose of this lecture is to prove

Theorem. The statement “all functions from R to R are continuous” is consistent with

HHA.

In fact we shall exhibit a large family of toposes in which “all functions R — R are
continuous” is valid. Our proof will be completely constructive. '

§1. Some topological sites.
I shall be interested in subcategories T of the category of topological spaces, which have
some (or all) of the following properties:
(a)if X € T, and U is an open subspace of X, then U is an object of T and the inclusion
U — X is an arrow in T;
(b) T is closed under products;
(¢) T is full subcategory of the category of topological spaces;
(d) R € T (R is the real line with the usual topology).

If T is a category satisfying (a) then we can define a Grothendieck topology J on T,
by setting for 7 € T and S — y(T),

S € J(T)ff T=U{U | U is an open subset of T, and (U —T)e S}

For various such T, we shall only consider this Grothendieck topology on T, and denote
the category of sheaves by SA(T).

I T satisfies (a) and X is any space (not necessarily an object from T), then there is
a sheaf C(X) on T, defined by

C(X)T)=Cts(T,X), forTeT. (1)
Here Cts(X,T) is the set of all continuous maps from T into X. This defines a functor

C : (spaces) — Sh(T). (2)
Notice that if X € T and T also satisfies (c), then

C(X) = y(X) = T(-, X). (3)

We call C(X) the sheaf represented by X.
The functor C preserves certain exponentials:

1.1 Lemma. Suppose T satisfies (a), (b), (c). LetT and X be spaces such that T is
locally compact and in T. Then there is an isomorphism of sheaves

C(X)°M = C(XT)
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(here X7 is the space of continuous maps, with the compact-open topology).

T we have

C(X)e ) Homyy(U), C(X)cm (Yoneda)

= Hom (y(U) x C(T),C(Xx)) (univ. prop. of expo.)

= Hom (y(U) x y(T),C(X)) (by (3)}

= Hom (y(U x T),C(X))

= Cts(U x T, X) (def. of C)

= Cts(U,XT) (standard prop. of compact — open top.)
= C(XT)U) (def. of C ).

§2. Representability of Dedekind reals,

In this section, T is a category satisfying (a) of §1. Recall the standard interpretation
N = A(N) of the natura] numbers in any topos. From N, one cap define the object ¢
of rationals in the usua] way as equivalence classes of Pairs of natural numbers (say as
S™™Mm>=n/mif mis even and m # 0, while < mm>=-n/m+1ifmis odd). Next,
one can define the set of Dedekind reals

RCPQ)x PQ)

as follows: for variables L,U of type P(Q), let Cut(L, U) be the conjunction of the following
formulas;

(i) "EQgeUnge L)

(i) Ire Q(r ¢ U),JqgeQ(qe L)

(iii) Vg, r € Qlg<rAre L=gqge L} VYq,re Qr<qgarecl =>qel)

(iv) VqEQ(qEL:}BreQ(reL/\q<r))Vq€Q(q€U=>3r€Q(r€U/\r<q}}
(v) Vg.re Qeg<r= (qELVrEU)).

Now define

E={(L,U) e PQ) x P(Q) | Cut(L,U)}.

2.1 Proposition. For the standard interpretation in Sh(T), N and @} are (interpreted as
sheaves) isomorphic to the representable sheques C{(Nai,), C(Quis).

Here Ny, and Qg denote the natural numbers and the rationals, both equipped with

the discrete topology. This proposition is rather €asy to verify, and I prefer to concentrate
on the more interesting result concerning R.

Proposition. For the standard interpretation in Sh(T), the sheaf of Dedekind reqls R
is tsomorphic to the representable sheaf C(R).

Proof. For an object W of the site T, an element of R(W) consists of a pair (L,U),
where L and U are elements of P(Q)NW); that is, L and U are subsheaves of y(W)x Q =
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T(—, W) x C(Qais) (cf. prop. 1 above, and I. 2.5; notice that y(W) is a sheaf here). Thus L
consists of pairs (a,p) wherea: Y — Wis a mapin Tandg:Y - Qs locally constant.
To say that L is a subsheaf means, first that (a,p) € L implies (B, pB) € L for any map
B:Z —Yin T, and secondly that if (@ | Vi,p| Vi) € L for each V; in some open cover
{Vi} of Y, then (o, p) € L. The same applies to U.

Now to say that (L,U) lies in the subsheaf R C P(Q) x P(Q) means that W I
Cut(L,U). We can spell this out by unwinding the forcing definitions. This gives:

(i’) For any map #: W' — W and any locally constant function ¢ : W’ — Q, not both
(8,9) € L(Q'} and (8,q) € U(W").

(ii’} There is an open cover {W;} of W such that for each i there are locally constant
functions ¢;,r; : W; — Q with (W: = W,q) € L(W,) and (W= W,r) e U(W;).

(iii") For any map 8: W/ — W in T and any locally constant functions qg,r: W - Q:
if ¢(z) < r(z) for all z € W’ and (8,r) € L(W’) then (8,q) € L(W'); and if r(z) < ¢(z)
for all z € W’ and (8,r) € U(W') then (B,q) € UW).

(iv’) Foranymap 8: W — W in T and any locally constant function ¢ : W’ — Q: if
(B,q) € L(W’) (resp. (B,q) € U(W')) then there are an open cover {W/} of W’ and locally
constant functions r; : W/ — Q such that ri(z) > q(z) for all z € W/ and (B | W/, r) €
L(W/) (resp. ri(z) < g(z) forall z € Wiand (8| W/,r;} € U(W)).

(v')Forany 8: W' - W in T and any two locally constant functions ¢,r : W’ — Q
such that ¢(z) < r(z) for all £ € W, there exists a cover {W/} of W’ such that for each 3,
either (B | Wi,q | W) € L(W)) or (8 | W}, r | W) € U(W).

Write ¢ for the constant function with value g € Q. Consider for a point z € W the
sets of rationals

L:={¢€Q|3open VCW:zeVand (Ve W,i|V)e L(V)],
Ur={rEQIBopenVQW:a:EVand(VHW,f'IV)EU(V)}.

It readily follows from (i’) - (v} above that L, and U, form a Dedekind cut (in the category
of sets). Therefore there is a unique real number sup L, = inf U,. We can thus define a
function

fov:W =R fiyz)= sup L,.
In other words, for rationals ¢, € Q,
¢< fru(z)<riffge Lyand r € U,.

It follows that f is continuous.

Conversely, suppose we start with a given continuous function f: W — R. Define
subsheaves L; and U of T(—, W) xQ by setting for 8 : W — Win T andp: W' = Q
locally constant,

pEL(W)iff Vee W p(z) < fB(z)
peU;W)iff Yz e W' p(z) > fB(z).
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Then W I+ Cut(L,, Uy); that is, (i) - (v') above hold for Ly and U;.
It is now a straightforward matter to spell out the definitions and check that

R(W) = C(R)(W){ 5;55} - ff'"’

are mutually inverse operations, natural in W. This proves the proposition.

From lemma 1.1 and proposition 2.2. we obtain:

2.3 Corollary. If T also satisfies conditions (b) - (d), then for the standard interpre-
tation in Sh(T), there is an tsomorphism of sheaves

RR 2 C(RR).

§3. Continuity of all functions.
In this section, T is a category satisfying conditions (a) - (d) from §1. I shall now prove:

3.1 Theorem. In Sh(T), the HHA-sentence “ali functions R — R are continuous” is
valid,

Proof. A more explicit version of the theorem states that the sentence

VfERR VYze R Vee R (€>0=35¢ R(6 > 0A
Vye R (I—5<y<$+5—*f(r)—€<f(y)<f($)+€)))

is valid in Sh(T). By 2.2 and 2.3, R is the sheaf C'(R) and RR s C(R®), up to isomorphism.
So take an object W ¢ T,and f ¢ C(RR)(W), q,¢ € C(R)YW) such that W IF ¢ > 0.
Thus f: W — RR and a,e: W — R are continuous maps such that e(z) > O forall z € W
We have to show

(«WWk3ecRr (5>0AVyeR(a-6<y<a+6=>f(a)—e<f(y)<f(a)+e)).

(Here f(a) stands for the composition of (a,f) : W — R x RR with the evaluation map
R x RR — R, as before).

Now f corresponds to a continuous map f: W x R — R via
f(z)(t) = f(.'.l.’:,t) (z € W,te R)

By continuity of f and €, there exists for each z € W a neighbourhood W, C W of and
a 6, > 0 such that for al] feW,andallte (a(z) - 6;,a(z) + 8.), we have both

2(6) - a(@)] < 14, (1)

and
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17(6.0) = fa,a(@)] < 2(e) @)
I claim that it follows that

W, I Vy € R(a — %5, <y<a+t %5, = f(a) - € < f(y) < f(a) + ). (3)
To see this, choose #: V - W, in T and b: V — R such that

Vi aﬂ-—%&z<b<aﬁ+%6,,. (4)
Thus forall ( € V,

28(0) = bQ)| < 3.,
and hence by (1),

la(z) — 6(¢)| < &..
Consequently, we can substitute B¢ for £ and b(() for t in (2), to obtain

17(8(0),0)) = iz, ()] < 2eB(c).
Also by (2),

7(8(),a8(0) - f@,a(@)] < SeB(0).

Thus combining the last two inequalities

1F(8(0), 8(¢)) = F(B(C), aB(C))] < eB(C).
But this means that
VIE(f-B)a-B)—e-B<(f-B)b) < (f-b)(a-B)+e-B.

Since this holds for all B:V —= W,andall b: V = R such that (4), it follows that (3)
holds. Since the open sets W,, for all x € W, form a cover of W, (x} above follows, and
the proof is complete.
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Lecture V. Morphisms and definability.

In this lecture, I give simple sheaf-theoretic proofs of the following results.

Theorem 1. Let f(z,y) be a formula of HHA such that HHA & “f is a functionR — R”
(where R is the set of Dedekind reals). Then HHA & “f is continuous”.

Theorem 2. There are no definable non-principal ultrafilters on N (in ZFC, or clas-
sical type theory with choice).

The first theorem roughly states that intuitionistically, every definable function is con-
tinuous. It is known as the continuity rule (for intuitionistic higher order logic). The proof
that I will present here is due to A. Joyal (unpublished). The second theorem states that
there is no formula ¢(z), where z is a variable of type PN, for which ZFC + “{z | ¢(z)} is
a non-principal ultrafilter”. This should be contrasted with the consequence of the axiom
of choice that there are many non-principal ultrafilters on N. The proof I give of theorem
2 is taken from unpublished joint work with A. Joyal. (Theorem 2 is perhaps the simplest
example of a series of “there exists no definable...”) - results which can be proved in es-
sentially the same way.)

§1. Morphisms.

An important aspect of sheaf theory is the study of morphisms of sites (C, J) — (C’, J'),
and how and when these give rise to various functors between the topoi Sk(C,J) and
Sh(C’,J'). 1 will not develop the general theory here. Instead, I consider only some very
special cases, which, however, suffice for the applications stated above.

1.1 Open embeddings. Let U be an open subspace of a topological space X, and
let i : U — X be the inclusion. There is an obvious “restriction” functor

i*: Sh(X) — Sh(U),

defined for a sheaf F on X and an open subset V C U by :(F)(V) = F(V). This functor
clearly preserves “everything”, i.e. products, exponentials, powersheaves, sums,

i"(F x G) & i*(F) x i*(G),
*(GF) = ()",
i*(PF) = P(i"(F)),

i'(Zﬂ: F)= za:(i'Fa),

etc., etc. Notice that in particular, :* preserves the standard interpretation of HHA. (One
sometimes says that ¢* is a logical functor.)

1.2 Homeomorphisms. Let f : ¥ — X be a continuous map of topological spaces.
There is an induced functor
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fe 1 SA(Y) > Sh(X),

defined for a sheaf F on ¥ and an open subset I/ of X by f(F)(U) = F(f-'U). In general,
f+ preserves hardly anything (only limits of sheaves are preserved). Here however, I am
interested in the case where f is a homeomorphism. Clearly in that case f. commutes with
products, exponentials, powersheaves, etc., as in

F(FxG) = [(F) x f.(G), f.(GF) = f.(G)&F) | f.(PF) = P(f.F),

and f. preserves the natural numbers in the sense that fiN = N. 1t follows that f.
preserves the standard interpretation of HHA. In particular, f, preserves the sheaf of
Dedekind reals: writing Ry for the sheaf of Dedekind reals on X (and similarly for Y),
there is a natural isomorphism

f(Ry)>Ryx. (1)
By proposition IV. 2.2, the sheaf Ry can be identified with the sheaf C(R) of continuous
real valued functions on X (and similarly for Y). With this identification, the isomorphism
(1) is given by composition with f-!, as

Cts(f'lU,R)ﬂCts(U,R), a— qo f! (2)

for any open U C X.
For a homeomorphism f: ¥ — X, we write

=M.
So for example for the sheaf of Dedekind reals, the isomorphism
S (Rx)>Ry (3)

is now given by compeosition with f.

1.3 General remarks. Any continuous map f : Y — X of topological spaces induces
adjoint functors

f-: Sh(Y) 5 Sh(X) : f,

where f* is left adjoint to f.. It is the functor f* which is harder to describe but more jm-
portant for logic. f* always preserves so-called (first order) geometric logic. If f is an open
map, then f* preserves all first order logic. If in addition f has locally connected fibers,
then f* preserves exponentials (for a more precise statement, see Johnstone (1984)), while
if f is an etale map then f* is a logical functor. More generally, there is a fully developed
theory of morphisms between sites which induce such adjoint functors between the sheaf
categories, and their behaviour at the level of logic. This leads to the theory of classifying
topoi, or universal models for geometric logic. See e.g. Makkai-Reyes (1977).

§2. The continuity rule.

We now present Joyal’s proof of theorem 1. Let oz, y) be a formula of HHA such that
HHA proves Yz € R3ly € Re(z,y). Then by the soundness theorem, the interpretation of
v yields for every topos £ a morphism of sheaves
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Fg:Rs - Rg,

where Ry is the sheaf of Dedekind reals in £,
In particular, for the case of a topological space X there is a morphism of sheaves

Fx :Rx — Ry (1)

where Ry is the sheaf of continuous real-valued functions on X (cf. prop. IV. 2.2). If
U C X is an open subspace, then since the restriction functor i* : Sh(X) - Sh(U) of 1.1
is logical, i* “commutes” with the calculation of the interpretation of the formula ¥, 50

Fy=(Fx)|U. (2)

Let f be the “real” calculation of %, in our own universe of sets. So f is a function
R — R, and our problem is to show that f is continuous.

Consider the space X consisting of two copies R x {0} and R x {1} of the real line, with
the following topology: I/ C R x {0,1} is open in X iff U N R x {0} is open in R for the
usual euclidean topology, and for any z € R: if (2,0) € U then also (z,1) € U, In other
words, an open subset of X is given by two subsets U, and U, of R where U, is open in R
and U, is any subset which contains Us. You should think of X as the line R with a copy
of the discrete reals glued on top of it.

(3)

Consider Fx : Ry — Rx, and write ¥ : X = R for the projection. Clearly v is
continuous, so v is an element of Rx. Therefore Fy (7) is again a continuous map X — R.
In particular, its restriction to the bottom copy of Rin X,

9:R—~R, g(a) = Fx(v(a,0)) (4)
is continuous. As for the ‘discrete” top-copy R x {1} C X, we observe that
Fx("Ne,1) = f(a) (5)

(recall that the function f is the “real” interpretation of the formula ¥). Indeed, of « € R
then (a,1) is an isolated point of X, so that the inclusion of this one-point open subset
1i{{ey1)} = U < X yields a logical morphism by restriction

Sh(X) — Sh(U),
as in 1.1. Hence by (2) above,
Fx(v) U = Fy(y | U). (6)
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But since U is a one-point space, Sh(U) is the category of sets, and Fy, is “‘the real f
while v | U is the real number o, Thus (6) simply says that Fix (v)(a, 1) = f(e), as asserted
in (5).

To see that f is continuous. it now suffices to observe that f = g- But more generally,

Lemma. Leth: X - R be continuous, Then for any a € R, h(a,0) = h(a, 1).

Proof. Suppose g = h{a,0) # h(a,1). Then h='(R - {8}) is an open set which con-
tains (a, 0) but not (a,1). There are no such open sets in X,

§3. Locales and spaces,

I'wish to come back for 5 moment to the Heyting- and Boolean-valued models mentioned
in §II. 2, and introduce locales as generalized spaces.

The most usefu] notion of a morphism F : B — A if cHa’s is that of a function which

commutes with finite meets and arbitrary sups: that js

(spaces) — (locales), (1)

which sends a space X to the complete Heyting algebra O(X) of open sets in X ,and a
continuous map f: X — y to the cHa morphism 710 = O(X), which is thus a
morphism of locales in the other direction.

One should think of locales as genemlized spaces. In developing the theory, it is ex-
tremely useful to employ a suggestive notation: One often denotes the objects of the
category of locales by X,Y,... and the morphisms by f: X — ¥ etc. For a locale X, the
corresponding cHa is denoted O(X), while f-1 . O(Y) — O(X) denotes the cHa-morphism
corresponding to a locale morphism f: X - V. Ope sometimes even goes as far as calling
the elements of O(X) opens of the locale X, although they are not open subsets of X in
any sense. Note that for a locale X y Wwhat is given is really a cHa O(X ); the notation X
is just a formal device to emphasize that we wish to regard ((X) not in the category of
cHa’s, but in that of locales.

For locales X and Y, I shall write

Cts(X,Y) (2)
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for the set of “continuous maps” X — Y, that is for the set of cHa-morphisms O(Y) —
O(X). If for instance Y is a topological space, then Cts(X,Y) of course denotes the set
of locale-maps X — Y, where we identify Y with its image under the functor (1).

A morphism j : X — Y of locales is called an embedding if the corresponding cHa-
morphism j=! : O(Y) — O(X) is surjective; X is then called a sublocale of Y. Two
examples of such are important for us. First, if U € O(X), then the set {(VeO(X)|V<
U} is again a cHa, hence defines a locale which we denote again by U. So

OU)={VeoX)|v<u) (3)

(where on the right U denotes an element of O(X), and on the left U is a formal symbol
to denote the locale whose cHa of opens is described by the right-hand side of (3).) The
embedding

J:U—=X
of locales “is” the cHa-morphism
i OX) - o), i7'\V)=VaU.

Sublocales of this form are called open sublocales.
Another example is the embedding

t: Xom — X,
where the locale X.._ is defined by the cHa
X)) ={V € O(X) | =V =V).

(Here = is the pseudo-complement of the cHa OX): ~U=V{WeOX)|WAU = 0}.)
The embedding ¢ : X, — X is given by the surjective cHa-morphism

i1 O(X) = O(X.2),i™ U) = U,

Notice that in the cHa O(X--), meets are computed as in O(X), but sups are not. More
precisely, if we write 4. : O(X_.) — O(X) for the inclusion function, then LUAV) =
WU ALY, but i,(VU;) = ==\ U, Tt is well-known and easy to check that O(X_.) is in
fact a complete Boolean algebr.

For a locale X, we shall write Jh(X) for the category of sheaves on X; that is, for the
category of sheaves on the cHa O(X) with the “supremum” Grothendjeck topology. An
example of such a sheaf is the sheaf Rx of real-valued continuous maps: for U/ € O(X),

Rx(U) = Cts(U,R),
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where on the right I/ stands for the open sublocale I/ of X as just defined, and Cts(U,R)
1s the set of locale-maps f: U - R. It is clear that Ry is a sheaf.

The proof of proposition IV, 2.2 can now be “translated” from the language of topo-
logical spaces to that of locales, and gives

3.1 Proposition. For the standard interpretation in Sh(X), the sheaf of Dedekind re.
als is (isomorphic to) the sheaf Ry .

The Cantor space 2N is 5 subspace of R, and this definition of 2V ¢can be “copied” in
HHA so as to give an isomorphism of 2V with a subset of the Dedekind reals R. Proposi-
tion 3.1 then yields

3.2 Corollary. For the standard interpretation in Sh(X), the ezponential 9N s (is0-
morphic to) the sheaf Cts(—,2V) of continuous map into the Cantor space.

In this corollary, 2 is the constant sheaf A({0,1}), and N is the constant sheaf AN (cf. I,
2.10). It is easy to prove 3.2 directly (without using 3.1) from the universa] property of
the exponential 2¥ and the adjunction between A and T of I. 2.10.

phisms of locales.
There is one other well-known result which I shall use, viz,

3.8 Proposition. The aziom of choice is valid in Sh{X_.), for any locale X .

Proof. (sketch) I shall prove validity of the formula
Vi€ BAVye Bz ¢ Af(z) =y - 3s ¢ ABvy ¢ Bfs(y)=y] ()

for any two sheaves A and B on X... Let U ¢ O(X--), and let f ¢ BA(U) (that is,
f AU B | U is & morphism of sheaves on the open sublocale U/ of Xa-), such
that U I vy ¢ B3z ¢ Af(z) = y. This means that f:AlU S B | U is an epi-
morphism (see I]I. 1.2). By Zorn’s lemma, there is a maximal section s : M — A | U
(a morphism in Sh(U)), where M is a subsheaf of B | {/ and fos = id. Suppose
M # B | U. Then there is aV<Uin O(X.-)and a b € B(V) with & ¢ M(V). Let
Wy=y{Wcy [6- (W V)e M(W)}. Then W, e O(X--), and since M s a subsheaf
b€ M(W,). Therefore W, # V, and hence 0 #(VA-W,) e O(X.-). Since f is epi, there
is a non-zero P < V A W, in O(X..) such that b. (P = V) = f(a) for some g € A(P).
Define M’ to be the subsheaf of B generated by M and b- (P — V),and let s' = M’ _, 4
be the extension of s defined by s'(b - (P—V))=a. Then s is a proper extension of s,
contradicting the maximality of s. Thus we must have M = B | U, ie. 5. B |U—-A|U.
A fortiori U I 3s ¢ ABvy Bfs(y) = y. This proves the validity of (*).
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There is much more to say about locales. The interested reader might look at the first
chapters of Joyal-Tierney (1984), or at Johnstone (1982).

§4. No definable ultrafilters.

In this section I shall prove theorem 2. | shall work in classical type theory with
choice; that is, the system obtained from HHA by adding the axioms Vp € P(1)(3z(z €
p) V -3z(z € p)) for classical logic and Vf € AB(Va € A3 ¢ Bf(d) =a = 35 ¢
BAYafs(a) = a) for choice. The same argument will apply to ZFC, see II. 1.6.)

Let A be the countable product of copies of the ring /27,

A=T]z/21.

n>0

A is a topological ring (with the product topology). As a set, A is the exponential 2N, So
if X is a locale then the interpretation of 4 in X is the sheaf C(A) of locale maps into A
(see 3.2). Consider also the subring

D= Bnyol/2Z

of A, given by those sequences of zeros and ones which are eventually zero. D is a discrete
dense subring of A.
A non-principal ultrafilter on N is the same thing as a homomorphism

T:A-12/21

which vanishes on D C A. Let 8(z,y) be a formula for which it is provable that ¢ defines
a homomorphism 4 — Z /27 which vanishes on D. (As usual, I write 0(z) = y for 6(z,y).)

Now let X be any space, and let 7 : X.. — X be the embedding as in §3. Let T be
the interpretation of @ in Sh(X--}. So T is a morphism of sheaves C(A) - A(Z/22). It
T: X > Xisa homeomorphism, then 7 restricts to an isomorphism 7, : X, — X__ of
locales. Since 77 is logical and T is definable, we have

n(T)=T. (1)

fao: X < Ais any continuous map, then o j : X__ — A is an element of the
mterpretation C(A) of the ring A in Sh(X..). Thus

1(T(aoj)) = ;"((Tg(ﬁ'(f;)ojn
=1(rf(aoj
=T{aojom) (2)
=T(aoT0j)

I now wish to apply this to the special case where X = A and o is the identity. Consider
for each d € D the translation homeomorphism

7(d): ASA, r(d)a)=d+ a,
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together with its restriction
T(d): Aen = A,

Lemma. Let F : A _, Y be any continuous map into some topological space Y. [f
For(d)y=F foralld ¢ D, then F is constant

Proof. Suppose F o T(dh = Fiforalld e D. | wish to show that for some point y € Y
it holds that for any open neighbourhood U/ of y, U U) = Ao (= the top element 1 of
O(A--)). Clearly any non-empty open subset of A which js invariant under translations
7{d) in dense (since D is dense). It follows that if #V € O(A..) is invariant under 7(d),
forall d € D, then V must be the maximal element of A-.. Since FY(U) s invariant, it
thus follows that it suffices to find a point y € ¥ such that F=YU) # 0 for any neighbour-
hood U of y. Suppose no such y exists. Then any y € Y has a neighbourhood U, with
F=1(Uy) = 0. Hence A__ = FY(Y)= F U WVyey Uy) = Vier F7Y(Uy) = 0, contradiction.

Now consider the inclusjon J 1 A~ — A, which is an element of the interpretation of

the ring A inside Sh(A--). Pick any d € D, and write d: A — 4 for the constant map

with valug d. Thus d can be viewed as an element of the interpretation of D C A, and
hence T(d) = 0. Therefore

"(diTG) =T(r(d)oj) (see (2))
=T(d + )
= I'(d) + T(5)
=T(j).
By the lemma (applied to the case where V is the discrete space Z /2Z), T(j) is constant.
On the other hand, consider the homeomorphism
prA— A
sending an element a to its inverse pla), together with the restriction
/1 A-.-. — A-,-..
Also, write 1 : A — A for the constant map with value 1. Since 1 is the unit of the ring
C(4),
T(l)=1. (3)
On the other hand, j+i=—j= P1(7). Therefore
TG)+T() =T(+1)
= ri(T)(pi(5))
= £1(T())
= T(J‘) O,
=T(),
the latter identity since T'(5) is constant. Thus T(1) =0, contradiction,

This proves that in Sh{A--), the formula © 6(z,y) defines a non-principal ultrafilter”
1s not valid,
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