Category Theory and Topos Theory, Spring 2014 Hand-In Exercises

Jaap van Oosten

March–June 2014

Exercise 1 (To be handed in February 17) Recall that a topological space is *normal* if every one-point subset is closed and for every pair A, B of disjoint closed subsets, there exist disjoint open subsets U, V with $A \subset U, B \subset V$. We denote by \mathcal{N} the full subcategory of Top on the normal topological spaces.

- a) Characterise the epimorphisms in \mathcal{N} . Hint: you may find it useful to invoke Urysohn's Lemma.
- b) Show that for two morphisms $f, g : A \to B$ in \mathcal{N} we have: f = g if and only if for every morphism $h : B \to \mathbb{R}$, hf = hg holds (this property of \mathbb{R} in \mathcal{N} is sometimes called a *coseparator*)

Exercise 2 (To be handed in March 10) Let C be a regular category.

a) Suppose that

is a pullback diagram in C with e regular epi. Prove: if g is mono, then so is f.

b) Prove that the composition of two regular epis in C is again regular epi in C.

Exercise 3 (To be handed in March 24) We are given an adjunction $\mathcal{E} \xleftarrow{R}{\longleftrightarrow} \mathcal{S}$

with $R \dashv I$, unit η and counit ε .

a) Prove: I is faithful if and only if every component of ε is epi; and I is full if and only if every component of ε is split mono. Hint: you may use the fact that for an arrow $A \xrightarrow{f} B$ in \mathcal{E} , the composite arrow $RIA \xrightarrow{\varepsilon_A} A \xrightarrow{f} B$ transposes under the adjunction to the arrow $I(f): I(A) \to I(B)$. b) Now suppose I is full and faithful. Prove: if $F : \mathcal{A} \to \mathcal{E}$ is a diagram and IF has a limit in \mathcal{S} , then F has a limit in \mathcal{E} .

Exercise 4 (To be handed in April 7) Let Ω be a frame, as in Definition 4.13 of the Category Theory lecture notes. We consider the category C_{Ω} defined there, and also the presheaf category Set^{Ω^{op}}.

We have the Yoneda embedding $y : \Omega \to \operatorname{Set}^{\Omega^{\operatorname{op}}}$ and we have a functor $H : \Omega \to C_{\Omega}$, which sends $p \in \Omega$ to the object (X, E_X) where $X = \{*\}$ and $E_X(*) = p$.

a) Show that there is an essentially unique functor $F : \mathcal{C}_{\Omega} \to \operatorname{Set}^{\Omega^{\operatorname{op}}}$ which preserves all small coproducts and moreover makes the diagram

commute. Give a concrete description of $F(X, E_X)$ as a presheaf on Ω .

- b) Suppose Ω has a (**nonempty!**-correction added later) subset B with the property that $\bigvee B \notin B$. Show that the functor F does not preserve regular epis.
- c) Show that the functor F has a left adjoint L.
- d) Show that the functor L from part c) does not preserve equalizers.

Exercise 5 (To be handed in April 28) We consider the category C whose objects are subsets of \mathbb{N} , and arrows $A \to B$ are *finite-to-one* functions, i.e. functions f satisfying the requirement that for every $b \in B$, the set $\{a \in A \mid f(a) = b\}$ is finite.

- a) Show that \mathcal{C} has pullbacks.
- b) Define for every object A of C a set Cov(A) of sieves on A as follows: $R \in Cov(A)$ if and only if R contains a finite family $\{f_1, \ldots, f_n\}$ of functions into A, which is *jointly almost surjective*, that is: the set

$$A - \bigcup_{i=1}^{n} \operatorname{Im}(f_i)$$

is finite.

Show that Cov is a Grothendieck topology.

c) Show that if $R \in Cov(A)$, then R contains a family $\{f_1, \ldots, f_n\}$ which is jointly almost surjective and moreover, every f_i is injective.

d) Given a (**nonempty**!-correction added later) set X and an object A of \mathcal{C} , we define $F_X(A)$ as the set of equivalence classes of functions $\xi : A \to X$, where $\xi \sim \eta$ if $\xi(n) = \eta(n)$ for all but finitely many $n \in A$.

Show that this definition can be extended to the definition of a presheaf F_X on \mathcal{C} .

e) Show that F_X is a sheaf for Cov.

Exercise 6 (To be handed in May 12) This exercise is about interpreting Logic in the category of sheaves on a site. There is a 'forcing' definition similar to the one for presheaves; it is explained on p. 32 of the lecture notes, with one regrettable inaccuracy. The definition of $C \Vdash_J \neg \varphi(a_1, \ldots, a_n)$ should be:

• $C \Vdash_J \neg \varphi(a_1, \ldots, a_n)$ if and only if for every arrow $g: D \to C$, if $D \Vdash_J \varphi(a_1g, \ldots, a_ng)$ then $\emptyset \in \text{Cov}(D)$

Now the exercise. We assume that we have a site $(\mathcal{C}, \text{Cov})$ and an object I of \mathcal{C} which satisfy the following conditions:

- i) $\emptyset \notin \operatorname{Cov}(I)$
- ii) If there is no arrow $I \to A$ then $\emptyset \in Cov(A)$
- iii) If there is an arrow $I \to A$ then every arrow $A \to I$ is split epi

We call a sheaf F in $Sh(\mathcal{C}, Cov) \neg \neg$ -separated if for every object A of \mathcal{C} and all $x, y \in F(A)$,

$$A \Vdash_J \neg \neg (x = y) \to x = y$$

Prove that the following two assertions are equivalent, for a sheaf F:

- a) F is $\neg\neg$ -separated
- b) For every object A of C and all $x, y \in F(A)$ the following holds: if for every arrow $\phi: I \to A$ we have $x\phi = y\phi$ in F(I), then x = y

Solution to Exercise 1.

- a) An arrow $f: X \to Y$ in \mathcal{N} is epi if and only if the image of f is dense in Y. The 'if' part is easy since normal spaces are Hausdorff and a continuous map between Hausdorff spaces is completely determined by its restriction to a dense subset of its domain. For the 'only if' part, suppose f does not have dense image. Pick $y_0 \notin \overline{f(X)}$. By Urysohn's Lemma there is a continuous function $g: Y \to \mathbb{R}$ satisfying: g(y) = 0 for every $y \in \overline{f(X)}$, and $g(y_0) = 1$. Let $h: Y \to \mathbb{R}$ be the function constant 0. Then g and hagree on f(X) yet $g \neq h$, so f is not epi.
- b) Clearly, 'only if' is trivial. For the 'if' part, suppose $f \neq g$. Pick $a \in A$ with $f(a) \neq g(a)$. Again by Urysohn, there is a continuous $h : B \to \mathbb{R}$ with h(f(a)) = 0, h(g(a)) = 1. So $hf \neq hg$.

Solution to Exercise 2.

a) Suppose $E \xrightarrow{p_0}_{p_1} B$ is a parallel pair for which $fp_0 = fp_1$. Let

be a pullback. Then by the pullback property of the original diagram there are arrows $q_0, q_1 : F \to A$ such that $gq_0 = g', hq_0 = p_0h'$ and $gq_1 = g', hq_1 = p_1h'$:

From $gq_0 = g' = gq_1$ and the assumption that g is mono, we get $q_0 = q_1$. Therefore $p_0h' = hq_0 = hq_1 = p_1h'$. Since h', being a pullback of the regular epi e, is regular epi (hence epi), we find $p_0 = p_1$. We conclude that f is mono.

b) Suppose in $A \xrightarrow{e_1} B \xrightarrow{e_2} C$ the arrows e_1, e_2 are both regular epi. In order to show that the composite e_2e_1 is regular epi, we factor this composite as me with m mono and e regular epi:

If $E \xrightarrow{p_0}_{p_1} A$ is the kernel pair of e_1 then $mep_0 = e_2e_1p_0 = e_2e_1p_1 = mep_1$ so since m in mono, $ep_0 = ep_1$. Therefore, since e_1 is the coequalizer of p_0, p_1 we have a unique map $n : B \to D$ satisfying $ne_1 = e$. Then we also have: $mne_1 = me = e_2e_1$, so since e_1 is epi, $mn = e_2$ and the following diagram commutes:

Repeating the argument for the kernel pair q_0, q_1 of e_2 , we get that $nq_0 = nq_1$; so since e_2 is the coequalizer of its kernel pair, we get a unique arrow $k: C \to D$ such that $ke_2 = n$.

Then $mke_2 = mn = e_2$ so since e_2 is epi, $mk = id_C$; and $kme = ke_2e_1 = ne_1 = e$, so since e is epi, $km = id_D$. We find that k is a two-sided inverse for m, which is therefore an isomorphism. We conclude that e_2e_1 is regular epi.

Solution to Exercise 3.

a) By the hint we have for every parallel pair $f, g: A \to B$, that I(f) = I(g) if and only if $f \varepsilon_A = g \varepsilon_A$. From this it follows easily that I is faithful if and only if ε is epi.

Suppose *I* is full. Take $\alpha : A \to RIA$ such that $I(\alpha) = \eta_{IA} : IA \to IRIA$. Then both id_{RIA} and $\alpha \varepsilon_A$ are transposes of η_{IA} , so $\alpha \varepsilon_A = id_{RIA}$ and ε is split monic.

Conversely, suppose ε_A is split monic, with retraction α . Any map $h : IA \to IB$ transposes to

$$RIA \stackrel{R(h)}{\to} RIB \stackrel{\varepsilon_B}{\to} B$$

which is equal to the composite

$$RIA \xrightarrow{\varepsilon_A} A \xrightarrow{\alpha} RIA \xrightarrow{R(h)} RIB \xrightarrow{\varepsilon_B} B$$

which is the transpose of $I(\varepsilon_B R(h)\alpha)$. Therefore $h = I(\varepsilon_B R(h)\alpha)$, and I is full.

b) Let \mathcal{I} be an index category and $M : \mathcal{I} \to \mathcal{E}$ be a diagram. Suppose $\nu : \Delta_L \Rightarrow IM$ is a limiting cone for IM in \mathcal{S} , with vertex L. Then we have a cone $\Delta_{RL} \stackrel{\varepsilon \circ (R(\nu))}{\Rightarrow} M$ in \mathcal{E} , and therefore a cone $I(\varepsilon \circ (R(\nu))) : \Delta_{IRL} \Rightarrow IM$ in \mathcal{S} . Since ν is limiting we have a unique map of cones $d : IRL \to L$.

Moreover, for each object i of \mathcal{I} we have, by naturality of η and the triangle identities, a commutative diagram

which means that η is a map of cones from ν to $I(\varepsilon \circ (R(\nu)))$. Since ν is limiting, we have $d\eta = \mathrm{id}_L$.

Now consider $\eta d: IRL \to IRL$. Since I is full, this composition is of the form I(e) for some $e: RL \to RL$. Let $\tilde{e}: L \to IRL$ be the transpose of

e. Then $\tilde{e} = I(e)\eta = \eta d\eta = \eta$, which is the transpose of id_{RL} . Therefore $e = id_{RL}$ and η_L is an isomorphism with inverse d.

We also see that the cone ν is isomorphic to the cone $I(\varepsilon \circ R(\nu)) : \Delta_{IRL} \Rightarrow IM$, which is therefore limiting. It now follows readily from the full and faithfulness of I that the cone $\varepsilon \circ R(\nu) : RL \to M$ is limiting in \mathcal{E} .

c) Another proof of part b) is: prove that I is monadic and invoke the theorem (exercise 114) in the lecture notes that a monadic functor creates limits. So, let $h : IRX \to X$ be an IR-algebra. Then $h\eta_X = \mathrm{id}_X$ and just as in the last part of the proof given above, one proves that h is an isomorphism with inverse η .

Moreover, any object of the form IX has the structure of an IR-algebra: $IRIX \xrightarrow{I(\varepsilon)} IX$.

We see that the category IR-Alg is equivalent to the full subcategory of S on objects in the image of I. Since I is full and faithful, this subcategory is equivalent to \mathcal{E} via I. So I is indeed monadic.

Solution to Exercise 4.

a) The first thing to recognize is that in C_{Ω} , every object (X, E_X) is the coproduct of the family $\{H(E_X(x)) | x \in X\}$. Therefore, if the functor F is to preserve coproducts and make the given diagram commute, there is no choice but to put

$$F(X, E_X) = \coprod \{ y(E_X(x)) \, | \, x \in X \}$$

As a presheaf, $F(X, E_X)$ can be described like this: it is the *P*-indexed collection of sets $(A_p)_{p \in P}$ where

$$A_p = \{(x, p) \mid p \le E_X(x)\}$$

and for $q \leq p$ the transition map $A_{qp} : A_p \to A_q$ sends (x, p) to (x, q). For a morphism $f : (X, E_X) \to (Y, E_Y)$ we have $E_X(x) \leq E_Y(f(x))$ so if the presheaf $F(Y, E_Y)$ is $(B_p)_{p \in \Omega}$, then $(x, p) \in A_p$ implies $(f(x), p) \in B_p$, so we have an arrow $F(f) : F(X, E_X) \to F(Y, E_Y)$ and this makes F a functor.

b) Here, we must know what regular epis look like in C_{Ω} . We have: $f : (X, E_X) \to (Y, E_Y)$ is regular epi if and only if f is a surjective function and moreover, for each $y \in Y$, $E_Y(y) = \bigvee \{E_X(x) \mid f(x) = y\}$.

Now suppose $B \subset \Omega$ and $\bigvee B \notin B$, so for all $b \in B$, $b < \bigvee B$. We consider the objects (B, id) and $H(\bigvee B)$ of \mathcal{C}_{Ω} . The unique map $\pi : B \to \{*\}$ is a morphism from (B, id) to $H(\bigvee B)$ and it is regular epi (for this, it has to be assumed that B is nonempty! This was a slight inaccuracy in the formulation of the exercise).

However, the morphism $F(\pi)$ is not epi in $\operatorname{Set}^{\mathcal{C}^{\operatorname{op}}}$, since $FH(\bigvee B) = y(\bigvee B)$ has an element at level $\bigvee B$, whereas $F(B, \operatorname{id})$ has no such element. Hence the component of $F(\pi)$ at $\bigvee B$ is not surjective.

c) Let $(A_p)_{p\in\Omega}$ be a presheaf on Ω , with maps $A_{qp}: A_p \to A_q$ for $q \leq p$. Let \bot denote the bottom element of Ω . Consider a morphism $f: (A_p)_{p\in\Omega} \to F(X, E_X)$. Suppose $\xi \in A_p$ and $\eta \in A_q$. By naturality of f, if $A_{\perp p}(\xi) = A_{\perp q}(\eta)$ and $f_p(\xi) = (x, p), f_q(\eta) = (y, q)$, then x = y. We see therefore, that f determines a function $\tilde{f}: A_{\perp} \to X$ with the property that for every element $\xi \in A_p$,

$$f_p(\xi) = (\tilde{f}(A_{\perp p}(\xi)), p)$$

Moreover, we must have for $\xi \in A_p$ that $p \leq E_X(\tilde{f}(A_{\perp p}(\xi)))$. This gives us the idea to define L: define $L((A_p)_{p \in P})$ as (A_{\perp}, E) where

$$E(\xi) = \bigvee \{ p \in P \mid \text{for some } x \in A_p, A_{\perp p}(x) = \xi \}$$

We now see that the map $\tilde{f}: A_{\perp} \to X$ is a morphism $L((A_p)_{p \in P}) \to (X, E_X)$ in \mathcal{C}_{Ω} . Coversely, given a map $g: L((A_p)_{p \in P}) \to (X, E_X)$ we have a map $\bar{g}: (A_p)_{p \in P} \to F(X, E_X)$ by putting

$$\bar{g}_p(\xi) = (g(A_{\perp p}(\xi)), p)$$

You can check yourself that \bar{g} is well-defined and that the operations (\cdot) and $(\bar{\cdot})$ are each other's inverse. So, L is left adjoint to F.

d) For a concrete example we have to fix Ω . So let $\Omega = \{0 < 1\}$. Consider the presheaves A and B on Ω , where $A_1 = A_0 = \{*\}, B_0 = \{*\}, B_1 = \{a, b\}$ with $a \neq b$. We have two arrows, f_a and f_b , from A to B and their equalizer is the inclusion $E \subset A$ where $E_0 = \{*\}, E_1 = \emptyset$. Applying the functor L, we see that L(A) = L(B) = H(1), and that $L(f_a) = L(f_b)$ is the identity map. So the equalizer of $L(f_a)$ and $L(f_b)$ is an isomorphism. However, L(E) = H(0) and $L(E) \to L(A)$ is not an isomorphism. So L does not preserve equalizers.

Solution to Exercise 5.

a) Given $B \xrightarrow{f} A$, $C \xrightarrow{g} A$ in \mathcal{C} , let

$$\begin{array}{c} X \xrightarrow{g'} B \\ f' \downarrow & \downarrow f \\ C \xrightarrow{g} A \end{array}$$

a pullback diagram in Set. Then X is countable, so we may as well assume that $X \subseteq \mathbb{N}$. Because f, g are finite-to-one, so are f', g' and the diagram lives in \mathcal{C} ; and it is a pullback in \mathcal{C} because whenever we have arrows $Y \xrightarrow{a} A, Y \xrightarrow{b} B$ in \mathcal{C} with fa = gb, then the unique factorization $Y \to X$ must be finite-to-one, and therefore in \mathcal{C} .

b) Certainly the maximal sieve is in Cov(A) since it contains the one-element family consisting of the identity on A.

For stability, suppose $R \in \text{Cov}(A)$ and $g: B \to A$ is an arrow in \mathcal{C} . We have to prove that $g^*(R) \in \text{Cov}(B)$. Let $\{f_1, \ldots, f_n\}$ a finite subfamily of R which is jointly almost surjective. It is enough to show that the sieve on B generated by $\{f'_1, \ldots, f'_n\}$ is in Cov(B), where each f'_i is such that

is a pullback. This is because this sieve is a subsieve of $f^*(R)$. Now the set

$$A - \bigcup_{i=1}^{n} \operatorname{Im}(f_i)$$

is a finite set, call it E. Since g is an arrow in C, hence a finite-to-one function, its preimage under g, $g^{-1}(E)$, is finite. Hence we have that

$$B - \bigcup_{i=1}^{n} \operatorname{Im}(f'_{i})$$

is also finite, which shows that the sieve generated by $\{f'_1, \ldots, f'_n\}$ is in Cov(B), as desired.

For local character, suppose R, S are sieves on $A, R \in \text{Cov}(A)$ and for every $f : D \to A$ in R we have $f^*(S) \in \text{Cov}(D)$. We have to prove that $S \in \text{Cov}(A)$. Now if R contains the jointly almost surjective family $\{f_1, \ldots, f_n\}$ and for every i the sieve $f_i^*(S)$ contains the jointly almost surjective family $\{g_1^i, \ldots, g_{k_i}^i\}$, then the family

$$\{f_i g_j^i \mid 1 \le i \le n, 1 \le j \le k_i\}$$

is a jointly almost surjective family of arrows into A, and this family is contained in S. So $S \in Cov(A)$, as desired.

- c) Suppose $\{f_1, \ldots, f_n\} \subset R$ is jointly almost surjective. For each *i* let $e_i : \operatorname{Im}(f_i) \to \operatorname{dom}(f_i)$ be a section of f_i . Then *R* contains the family $\{f_1e_1, \ldots, f_ne_n\}$ since *R* is a sieve. Moreover, every composition f_ie_i is injective; and the joint image of the maps f_ie_i is the same as the joint image of the maps f_i .
- d) Again, we need the set X to be nonempty. For, if $A \subset \mathbb{N}$ is finite and nonempty, then $\emptyset \in \text{Cov}(A)$ because the empty family is jointly almost surjective. However, if $X = \emptyset$ then there are no equivalence classes of functions $A \to X$.

Provided X is nonempty we define $F_X(A)$ as given. For an arrow $f: B \to A$ and $[\xi] \in F_X(A)$ we put: $[\xi]f = [\xi \circ f]$. This is well-defined, for if $\xi \sim \eta$ in $F_X(A)$ then $\xi \circ f \sim \eta \circ f$ in $F_X(B)$. Clearly, we have a prasheaf structure on F_X .

e) Suppose $\xi, \eta : A \to X$ are two functions such that for all $f : B \to A$ in some $R \in \text{Cov}(A)$ we have $[\xi]f = [\eta]f$ in $F_X(B)$. Then in particular this holds for a finite, jointly almost surjective subfamily $\{f_1, \ldots, f_n\}$ of R. So for each i, the compositions $\xi \circ f_i$ and $\eta \circ f_i$ agree on all but finitely elements of their domain. Since the family is finite, ξ and η agree on all but finitely elements of A. So F_X is separated.

Now suppose we have a compatible family

$$\{[\xi_f] \in F_X(\operatorname{dom}(f)) \mid f \in R\}$$

indexed by some $R \in \text{Cov}(A)$. We must produce an amalgamation. Now R contains a finite, jointly almost surjective subfamily $\{f_1, \ldots, f_n\}$ consisting of injective functions. Let A_i be the image of f_i . Clearly we have a unique function $\eta_i : A_i \to X$ such that $\eta_i \circ f_i = \xi_{f_i}$. For different indices i and j, there can be at most finitely many elements $x \in A_i \cap A_j$ for which $\eta_i(x) \neq \eta_j(x)$, by the compatibility of the family. So in the whole of A there are at most finitely many x such that either $x \notin \bigcup_{i=1}^n \text{Im}(f_i)$, or for some $i \neq j$, $x \in A_i \cap A_j$ and $\eta_i(x) \neq \eta_j(x)$. Let the finite set of such x's be E. Then define $\eta : A \to X$ by: $\eta(x) = \eta_i(x)$, if $x \notin E$ and $x \in A_i$ (it doesn't matter which i we choose), and let $\eta(x)$ be an arbitrary element of X if $x \in E$. Then $[\eta]$ is an amalgamation for the family $\{[\xi_{f_i}] \mid 1 \leq i \leq n\}$ and hence, by compatibility, for the original family we started with.

Solution to Exercise 6.

a) \Rightarrow b): suppose A an object of C, $x, y \in F(A)$ such that for all $\phi : I \to A$ we have $x\phi = y\phi$. We have to prove that x = y, but by assumption a) it is sufficient to prove that $A \Vdash_J \neg \neg (x = y)$, which, after some elementary logical operations, is equivalent to:

(*) For every arrow $B \xrightarrow{f} A$, if $\emptyset \notin \text{Cov}(B)$ then there is an arrow $C \xrightarrow{g} B$ such that $\emptyset \notin \text{Cov}(C)$ and xfg = yfg.

But given such $f : B \to A$ with $\emptyset \notin \text{Cov}(B)$, we have some $g : I \to B$ by our assumptions on the site $(\mathcal{C}, \text{Cov})$. By hypothesis on A and x, y, we have xfg = yfg. So we have proved (*).

b) \Rightarrow a): Suppose $A \Vdash_J \neg \neg (x = y)$ (which is equivalent to (*) above, as we saw), and let $f: I \to A$ be an arrow. By (*) there is an arrow $C \xrightarrow{g} I$ such that xfg = yfg and $\emptyset \notin Cov(C)$. This last fact gives us some map $I \to C$, so we know that $g: C \to I$ is split epi; let $h: I \to C$ be a retraction. Then xfg = yfg, hence

$$xf = xfgh = yfgh = yf$$

The map $f: I \to A$ was arbitrary, so we conclude that the hypothesis of part b) is satisfied. Hence x = y. Because also A was arbitrary, we conclude that F is $\neg\neg$ -separated, as was to be shown.