Category Theory and Topos Theory, Spring 2014 Hand-In Exercises

Jaap van Oosten

March-June 2014

Exercise 1 (To be handed in February 17) Recall that a topological space is normal if every one-point subset is closed and for every pair A, B of disjoint closed subsets, there exist disjoint open subsets U, V with $A \subset U, B \subset V$. We denote by \mathcal{N} the full subcategory of Top on the normal topological spaces.
a) Characterise the epimorphisms in \mathcal{N}. Hint: you may find it useful to invoke Urysohn's Lemma.
b) Show that for two morphisms $f, g: A \rightarrow B$ in \mathcal{N} we have: $f=g$ if and only if for every morphism $h: B \rightarrow \mathbb{R}, h f=h g$ holds (this property of \mathbb{R} in \mathcal{N} is sometimes called a coseparator)

Exercise 2 (To be handed in March 10) Let \mathcal{C} be a regular category.
a) Suppose that

is a pullback diagram in \mathcal{C} with e regular epi. Prove: if g is mono, then so is f.
b) Prove that the composition of two regular epis in \mathcal{C} is again regular epi in \mathcal{C}.

Exercise 3 (To be handed in March 24) We are given an adjunction $\mathcal{E} \underset{I}{\stackrel{R}{\leftrightarrows}} \mathcal{S}$ with $R \dashv I$, unit η and counit ε.
a) Prove: I is faithful if and only if every component of ε is epi; and I is full if and only if every component of ε is split mono. Hint: you may use the fact that for an arrow $A \xrightarrow{f} B$ in \mathcal{E}, the composite arrow $R I A \xrightarrow{\varepsilon_{A}} A \xrightarrow{f} B$ transposes under the adjunction to the arrow $I(f): I(A) \rightarrow I(B)$.
b) Now suppose I is full and faithful. Prove: if $F: \mathcal{A} \rightarrow \mathcal{E}$ is a diagram and $I F$ has a limit in \mathcal{S}, then F has a limit in \mathcal{E}.

Exercise 4 (To be handed in April 7) Let Ω be a frame, as in Definition 4.13 of the Category Theory lecture notes. We consider the category \mathcal{C}_{Ω} defined there, and also the presheaf category $\operatorname{Set}^{\Omega^{\mathrm{op}}}$.

We have the Yoneda embedding $y: \Omega \rightarrow \operatorname{Set}^{\Omega^{\text {op }}}$ and we have a functor $H: \Omega \rightarrow \mathcal{C}_{\Omega}$, which sends $p \in \Omega$ to the object $\left(X, E_{X}\right)$ where $X=\{*\}$ and $E_{X}(*)=p$.
a) Show that there is an essentially unique functor $F: \mathcal{C}_{\Omega} \rightarrow \operatorname{Set}^{\Omega^{\mathrm{op}}}$ which preserves all small coproducts and moreover makes the diagram

commute. Give a concrete description of $F\left(X, E_{X}\right)$ as a presheaf on Ω.
b) Suppose Ω has a (nonempty!-correction added later) subset B with the property that $\bigvee B \notin B$. Show that the functor F does not preserve regular epis.
c) Show that the functor F has a left adjoint L.
d) Show that the functor L from part c) does not preserve equalizers.

Exercise 5 (To be handed in April 28) We consider the category \mathcal{C} whose objects are subsets of \mathbb{N}, and arrows $A \rightarrow B$ are finite-to-one functions, i.e. functions f satisfying the requirement that for every $b \in B$, the set $\{a \in A \mid f(a)=b\}$ is finite.
a) Show that \mathcal{C} has pullbacks.
b) Define for every object A of \mathcal{C} a set $\operatorname{Cov}(A)$ of sieves on A as follows: $R \in$ $\operatorname{Cov}(A)$ if and only if R contains a finite family $\left\{f_{1}, \ldots, f_{n}\right\}$ of functions into A, which is jointly almost surjective, that is: the set

$$
A-\bigcup_{i=1}^{n} \operatorname{Im}\left(f_{i}\right)
$$

is finite.
Show that Cov is a Grothendieck topology.
c) Show that if $R \in \operatorname{Cov}(A)$, then R contains a family $\left\{f_{1}, \ldots, f_{n}\right\}$ which is jointly almost surjective and moreover, every f_{i} is injective.
d) Given a (nonempty!-correction added later) set X and an object A of \mathcal{C}, we define $F_{X}(A)$ as the set of equivalence classes of functions $\xi: A \rightarrow X$, where $\xi \sim \eta$ if $\xi(n)=\eta(n)$ for all but finitely many $n \in A$.
Show that this definition can be extended to the definition of a presheaf F_{X} on \mathcal{C}.
e) Show that F_{X} is a sheaf for Cov.

Exercise 6 (To be handed in May 12) This exercise is about interpreting Logic in the category of sheaves on a site. There is a 'forcing' definition similar to the one for presheaves; it is explained on p. 32 of the lecture notes, with one regrettable inaccuracy. The definition of $C \Vdash_{J} \neg \varphi\left(a_{1}, \ldots, a_{n}\right)$ should be:

- $C \Vdash_{J} \neg \varphi\left(a_{1}, \ldots, a_{n}\right)$ if and only if for every arrow $g: D \rightarrow C$, if $D \Vdash_{J} \varphi\left(a_{1} g, \ldots, a_{n} g\right)$ then $\emptyset \in \operatorname{Cov}(D)$

Now the exercise. We assume that we have a site $(\mathcal{C}, \mathrm{Cov})$ and an object I of \mathcal{C} which satisfy the following conditions:
i) $\emptyset \notin \operatorname{Cov}(I)$
ii) If there is no arrow $I \rightarrow A$ then $\emptyset \in \operatorname{Cov}(A)$
iii) If there is an arrow $I \rightarrow A$ then every arrow $A \rightarrow I$ is split epi

We call a sheaf F in $\operatorname{Sh}(\mathcal{C}, \mathrm{Cov}) \neg \neg$-separated if for every object A of \mathcal{C} and all $x, y \in F(A)$,

$$
A \Vdash_{J} \neg \neg(x=y) \rightarrow x=y
$$

Prove that the following two assertions are equivalent, for a sheaf F :
a) F is $\neg \neg$-separated
b) For every object A of \mathcal{C} and all $x, y \in F(A)$ the following holds: if for every arrow $\phi: I \rightarrow A$ we have $x \phi=y \phi$ in $F(I)$, then $x=y$

Solution to Exercise 1.

a) An arrow $f: X \rightarrow Y$ in \mathcal{N} is epi if and only if the image of f is dense in Y. The 'if' part is easy since normal spaces are Hausdorff and a continuous map between Hausdorff spaces is completely determined by its restriction to a dense subset of its domain. For the 'only if' part, suppose f does not have dense image. Pick $y_{0} \notin \overline{f(X)}$. By Urysohn's Lemma there is a continuous function $g: Y \rightarrow \mathbb{R}$ satisfying: $g(y)=0$ for every $y \in \overline{f(X)}$, and $g\left(y_{0}\right)=1$. Let $h: Y \rightarrow \mathbb{R}$ be the function constant 0 . Then g and h agree on $f(X)$ yet $g \neq h$, so f is not epi.
b) Clearly, 'only if' is trivial. For the 'if' part, suppose $f \neq g$. Pick $a \in A$ with $f(a) \neq g(a)$. Again by Urysohn, there is a continuous $h: B \rightarrow \mathbb{R}$ with $h(f(a))=0, h(g(a))=1$. So $h f \neq h g$.

Solution to Exercise 2.

a) Suppose $E \underset{p_{1}}{\stackrel{p_{0}}{\rightrightarrows}} B$ is a parallel pair for which $f p_{0}=f p_{1}$. Let

be a pullback. Then by the pullback property of the original diagram there are arrows $q_{0}, q_{1}: F \rightarrow A$ such that $g q_{0}=g^{\prime}, h q_{0}=p_{0} h^{\prime}$ and $g q_{1}=g^{\prime}, h q_{1}=p_{1} h^{\prime}:$

From $g q_{0}=g^{\prime}=g q_{1}$ and the assumption that g is mono, we get $q_{0}=q_{1}$. Therefore $p_{0} h^{\prime}=h q_{0}=h q_{1}=p_{1} h^{\prime}$. Since h^{\prime}, being a pullback of the regular epi e, is regular epi (hence epi), we find $p_{0}=p_{1}$. We conclude that f is mono.
b) Suppose in $A \xrightarrow{e_{1}} B \xrightarrow{e_{2}} C$ the arrows e_{1}, e_{2} are both regular epi. In order to show that the composite $e_{2} e_{1}$ is regular epi, we factor this composite as $m e$ with m mono and e regular epi:

If $E \underset{p_{1}}{\stackrel{p_{0}}{\Longrightarrow}} A$ is the kernel pair of e_{1} then $\operatorname{mep}_{0}=e_{2} e_{1} p_{0}=e_{2} e_{1} p_{1}=$ $m e p_{1}$ so since m in mono, $e p_{0}=e p_{1}$. Therefore, since e_{1} is the coequalizer of p_{0}, p_{1} we have a unique map $n: B \rightarrow D$ satisfying $n e_{1}=e$. Then we also have: $m n e_{1}=m e=e_{2} e_{1}$, so since e_{1} is epi, $m n=e_{2}$ and the following diagram commutes:

Repeating the argument for the kernel pair q_{0}, q_{1} of e_{2}, we get that $n q_{0}=$ $n q_{1}$; so since e_{2} is the coequalizer of its kernel pair, we get a unique arrow $k: C \rightarrow D$ such that $k e_{2}=n$.
Then $m k e_{2}=m n=e_{2}$ so since e_{2} is epi, $m k=\mathrm{id}_{C}$; and $k m e=k e_{2} e_{1}=$ $n e_{1}=e$, so since e is epi, $k m=\operatorname{id}_{D}$. We find that k is a two-sided inverse for m, which is therefore an isomorphism. We conclude that $e_{2} e_{1}$ is regular epi.

Solution to Exercise 3.

a) By the hint we have for every parallel pair $f, g: A \rightarrow B$, that $I(f)=I(g)$ if and only if $f \varepsilon_{A}=g \varepsilon_{A}$. From this it follows easily that I is faithful if and only if ε is epi.
Suppose I is full. Take $\alpha: A \rightarrow R I A$ such that $I(\alpha)=\eta_{I A}: I A \rightarrow I R I A$. Then both $\mathrm{id}_{R I A}$ and $\alpha \varepsilon_{A}$ are transposes of $\eta_{I A}$, so $\alpha \varepsilon_{A}=\mathrm{id}_{R I A}$ and ε is split monic.
Conversely, suppose ε_{A} is split monic, with retraction α. Any map h : $I A \rightarrow I B$ transposes to

$$
R I A \xrightarrow{R(h)} R I B \xrightarrow{\varepsilon_{B}} B
$$

which is equal to the composite

$$
R I A \xrightarrow{\varepsilon_{A}} A \xrightarrow{\alpha} R I A \xrightarrow{R(h)} R I B \xrightarrow{\varepsilon_{B}} B
$$

which is the transpose of $I\left(\varepsilon_{B} R(h) \alpha\right)$. Therefore $h=I\left(\varepsilon_{B} R(h) \alpha\right)$, and I is full.
b) Let \mathcal{I} be an index category and $M: \mathcal{I} \rightarrow \mathcal{E}$ be a diagram. Suppose ν : $\Delta_{L} \Rightarrow I M$ is a limiting cone for $I M$ in \mathcal{S}, with vertex L. Then we have a cone $\Delta_{R L} \stackrel{\varepsilon \circ(R(\nu))}{\Rightarrow} M$ in \mathcal{E}, and therefore a cone $I(\varepsilon \circ(R(\nu))): \Delta_{I R L} \Rightarrow I M$ in \mathcal{S}. Since ν is limiting we have a unique map of cones $d: I R L \rightarrow L$.
Moreover, for each object i of \mathcal{I} we have, by naturality of η and the triangle identities, a commutative diagram

which means that η is a map of cones from ν to $I(\varepsilon \circ(R(\nu)))$. Since ν is limiting, we have $d \eta=\mathrm{id}_{L}$.
Now consider $\eta d: I R L \rightarrow I R L$. Since I is full, this composition is of the form $I(e)$ for some $e: R L \rightarrow R L$. Let $\tilde{e}: L \rightarrow I R L$ be the transpose of
e. Then $\tilde{e}=I(e) \eta=\eta d \eta=\eta$, which is the transpose of $\mathrm{id}_{R L}$. Therefore $e=\mathrm{id}_{R L}$ and η_{L} is an isomorphism with inverse d.
We also see that the cone ν is isomorphic to the cone $I(\varepsilon \circ R(\nu)): \Delta_{I R L} \Rightarrow$ $I M$, which is therefore limiting. It now follows readily from the full and faithfulness of I that the cone $\varepsilon \circ R(\nu): R L \rightarrow M$ is limiting in \mathcal{E}.
c) Another proof of part b) is: prove that I is monadic and invoke the theorem (exercise 114) in the lecture notes that a monadic functor creates limits. So, let $h: I R X \rightarrow X$ be an $I R$-algebra. Then $h \eta_{X}=\mathrm{id}_{X}$ and just as in the last part of the proof given above, one proves that h is an isomorphism with inverse η.
Moreover, any object of the form $I X$ has the structure of an $I R$-algebra: $I R I X \xrightarrow{I(\varepsilon)} I X$.
We see that the category $I R$-Alg is equivalent to the full subcategory of \mathcal{S} on objects in the image of I. Since I is full and faithful, this subcategory is equivalent to \mathcal{E} via I. So I is indeed monadic.

Solution to Exercise 4.

a) The first thing to recognize is that in \mathcal{C}_{Ω}, every object $\left(X, E_{X}\right)$ is the coproduct of the family $\left\{H\left(E_{X}(x)\right) \mid x \in X\right\}$. Therefore, if the functor F is to preserve coproducts and make the given diagram commute, there is no choice but to put

$$
F\left(X, E_{X}\right)=\coprod\left\{y\left(E_{X}(x)\right) \mid x \in X\right\}
$$

As a presheaf, $F\left(X, E_{X}\right)$ can be described like this: it is the P-indexed collection of sets $\left(A_{p}\right)_{p \in P}$ where

$$
A_{p}=\left\{(x, p) \mid p \leq E_{X}(x)\right\}
$$

and for $q \leq p$ the transition map $A_{q p}: A_{p} \rightarrow A_{q}$ sends (x, p) to (x, q). For a morphism $f:\left(X, E_{X}\right) \rightarrow\left(Y, E_{Y}\right)$ we have $E_{X}(x) \leq E_{Y}(f(x))$ so if the presheaf $F\left(Y, E_{Y}\right)$ is $\left(B_{p}\right)_{p \in \Omega}$, then $(x, p) \in A_{p}$ implies $(f(x), p) \in B_{p}$, so we have an arrow $F(f): F\left(X, E_{X}\right) \rightarrow F\left(Y, E_{Y}\right)$ and this makes F a functor.
b) Here, we must know what regular epis look like in \mathcal{C}_{Ω}. We have: f : $\left(X, E_{X}\right) \rightarrow\left(Y, E_{Y}\right)$ is regular epi if and only if f is a surjective function and moreover, for each $y \in Y, E_{Y}(y)=\bigvee\left\{E_{X}(x) \mid f(x)=y\right\}$.
Now suppose $B \subset \Omega$ and $\bigvee B \notin B$, so for all $b \in B, b<\bigvee B$. We consider the objects (B, id) and $H(\bigvee B)$ of \mathcal{C}_{Ω}. The unique map $\pi: B \rightarrow\{*\}$ is a morphism from $(B$, id) to $H(\bigvee B)$ and it is regular epi (for this, it has to be assumed that B is nonempty! This was a slight inaccuracy in the formulation of the exercise).
However, the morphism $F(\pi)$ is not epi in Set ${ }^{\mathcal{C}^{\text {op }}}$, since $F H(\bigvee B)=$ $y(\bigvee B)$ has an element at level $\bigvee B$, whereas $F(B, \mathrm{id})$ has no such element. Hence the component of $F(\pi)$ at $\bigvee B$ is not surjective.
c) Let $\left(A_{p}\right)_{p \in \Omega}$ be a presheaf on Ω, with maps $A_{q p}: A_{p} \rightarrow A_{q}$ for $q \leq p$. Let \perp denote the bottom element of Ω. Consider a morphism $f:\left(A_{p}\right)_{p \in \Omega} \rightarrow$ $F\left(X, E_{X}\right)$. Suppose $\xi \in A_{p}$ and $\eta \in A_{q}$. By naturality of f, if $A_{\perp p}(\xi)=$ $A_{\perp q}(\eta)$ and $f_{p}(\xi)=(x, p), f_{q}(\eta)=(y, q)$, then $x=y$. We see therefore, that f determines a function $\tilde{f}: A_{\perp} \rightarrow X$ with the property that for every element $\xi \in A_{p}$,

$$
f_{p}(\xi)=\left(\tilde{f}\left(A_{\perp p}(\xi)\right), p\right)
$$

Moreover, we must have for $\xi \in A_{p}$ that $p \leq E_{X}\left(\tilde{f}\left(A_{\perp p}(\xi)\right)\right)$. This gives us the idea to define L : define $L\left(\left(A_{p}\right)_{p \in P}\right)$ as $\left(A_{\perp}, E\right)$ where

$$
E(\xi)=\bigvee\left\{p \in P \mid \text { for some } x \in A_{p}, A_{\perp p}(x)=\xi\right\}
$$

We now see that the map $\tilde{f}: A_{\perp} \rightarrow X$ is a morphism $L\left(\left(A_{p}\right)_{p \in P}\right) \rightarrow$ $\left(X, E_{X}\right)$ in \mathcal{C}_{Ω}. Coversely, given a map $g: L\left(\left(A_{p}\right)_{p \in P}\right) \rightarrow\left(X, E_{X}\right)$ we have a map $\bar{g}:\left(A_{p}\right)_{p \in P} \rightarrow F\left(X, E_{X}\right)$ by putting

$$
\bar{g}_{p}(\xi)=\left(g\left(A_{\perp p}(\xi)\right), p\right)
$$

You can check yourself that \bar{g} is well-defined and that the operations $(\tilde{\cdot})$ and (\cdot) are each other's inverse. So, L is left adjoint to F.
d) For a concrete example we have to fix Ω. So let $\Omega=\{0<1\}$. Consider the presheaves A and B on Ω, where $A_{1}=A_{0}=\{*\}, B_{0}=\{*\}, B_{1}=\{a, b\}$ with $a \neq b$. We have two arrows, f_{a} and f_{b}, from A to B and their equalizer is the inclusion $E \subset A$ where $E_{0}=\{*\}, E_{1}=\emptyset$. Applying the functor L, we see that $L(A)=L(B)=H(1)$, and that $L\left(f_{a}\right)=L\left(f_{b}\right)$ is the identity map. So the equalizer of $L\left(f_{a}\right)$ and $L\left(f_{b}\right)$ is an isomorphism. However, $L(E)=H(0)$ and $L(E) \rightarrow L(A)$ is not an isomorphism. So L does not preserve equalizers.

Solution to Exercise 5.

a) Given $B \xrightarrow{f} A, C \xrightarrow{g} A$ in \mathcal{C}, let

a pullback diagram in Set. Then X is countable, so we may as well assume that $X \subseteq \mathbb{N}$. Because f, g are finite-to-one, so are f^{\prime}, g^{\prime} and the diagram lives in \mathcal{C}; and it is a pullback in \mathcal{C} because whenever we have arrows $Y \xrightarrow{a} A, Y \xrightarrow{b} B$ in \mathcal{C} with $f a=g b$, then the unique factorization $Y \rightarrow X$ must be finite-to-one, and therefore in \mathcal{C}.
b) Certainly the maximal sieve is in $\operatorname{Cov}(A)$ since it contains the one-element family consisting of the identity on A.

For stability, suppose $R \in \operatorname{Cov}(A)$ and $g: B \rightarrow A$ is an arrow in \mathcal{C}. We have to prove that $g^{*}(R) \in \operatorname{Cov}(B)$. Let $\left\{f_{1}, \ldots, f_{n}\right\}$ a finite subfamily of R which is jointly almost surjective. It is enough to show that the sieve on B generated by $\left\{f_{1}^{\prime}, \ldots, f_{n}^{\prime}\right\}$ is in $\operatorname{Cov}(B)$, where each f_{i}^{\prime} is such that

is a pullback. This is because this sieve is a subsieve of $f^{*}(R)$. Now the set

$$
A-\bigcup_{i=1}^{n} \operatorname{Im}\left(f_{i}\right)
$$

is a finite set, call it E. Since g is an arrow in \mathcal{C}, hence a finite-to-one function, its preimage under $g, g^{-1}(E)$, is finite. Hence we have that

$$
B-\bigcup_{i=1}^{n} \operatorname{Im}\left(f_{i}^{\prime}\right)
$$

is also finite, which shows that the sieve generated by $\left\{f_{1}^{\prime}, \ldots, f_{n}^{\prime}\right\}$ is in $\operatorname{Cov}(B)$, as desired.
For local character, suppose R, S are sieves on $A, R \in \operatorname{Cov}(A)$ and for every $f: D \rightarrow A$ in R we have $f^{*}(S) \in \operatorname{Cov}(D)$. We have to prove that $S \in \operatorname{Cov}(A)$. Now if R contains the jointly almost surjective family $\left\{f_{1}, \ldots, f_{n}\right\}$ and for every i the sieve $f_{i}^{*}(S)$ contains the jointly almost surjective family $\left\{g_{1}^{i}, \ldots, g_{k_{i}}^{i}\right\}$, then the family

$$
\left\{f_{i} g_{j}^{i} \mid 1 \leq i \leq n, 1 \leq j \leq k_{i}\right\}
$$

is a jointly almost surjective family of arrows into A, and this family is contained in S. So $S \in \operatorname{Cov}(A)$, as desired.
c) Suppose $\left\{f_{1}, \ldots, f_{n}\right\} \subset R$ is jointly almost surjective. For each i let $e_{i}: \operatorname{Im}\left(f_{i}\right) \rightarrow \operatorname{dom}\left(f_{i}\right)$ be a section of f_{i}. Then R contains the family $\left\{f_{1} e_{1}, \ldots, f_{n} e_{n}\right\}$ since R is a sieve. Moreover, every composition $f_{i} e_{i}$ is injective; and the joint image of the maps $f_{i} e_{i}$ is the same as the joint image of the maps f_{i}.
d) Again, we need the set X to be nonempty. For, if $A \subset \mathbb{N}$ is finite and nonempty, then $\emptyset \in \operatorname{Cov}(A)$ because the empty family is jointly almost surjective. However, if $X=\emptyset$ then there are no equivalence classes of functions $A \rightarrow X$.

Provided X is nonempty we define $F_{X}(A)$ as given. For an arrow $f: B \rightarrow$ A and $[\xi] \in F_{X}(A)$ we put: $[\xi] f=[\xi \circ f]$. This is well-defined, for if $\xi \sim \eta$ in $F_{X}(A)$ then $\xi \circ f \sim \eta \circ f$ in $F_{X}(B)$. Clearly, we have a prasheaf structure on F_{X}.
e) Suppose $\xi, \eta: A \rightarrow X$ are two functions such that for all $f: B \rightarrow A$ in some $R \in \operatorname{Cov}(A)$ we have $[\xi] f=[\eta] f$ in $F_{X}(B)$. Then in particular this holds for a finite, jointly almost surjective subfamily $\left\{f_{1}, \ldots, f_{n}\right\}$ of R. So for each i, the compositions $\xi \circ f_{i}$ and $\eta \circ f_{i}$ agree on all but finitely elements of their domain. Since the family is finite, ξ and η agree on all but finitely elements of A. So F_{X} is separated.
Now suppose we have a compatible family

$$
\left\{\left[\xi_{f}\right] \in F_{X}(\operatorname{dom}(f)) \mid f \in R\right\}
$$

indexed by some $R \in \operatorname{Cov}(A)$. We must produce an amalgamation. Now R contains a finite, jointly almost surjective subfamily $\left\{f_{1}, \ldots, f_{n}\right\}$ consisting of injective functions. Let A_{i} be the image of f_{i}. Clearly we have a unique function $\eta_{i}: A_{i} \rightarrow X$ such that $\eta_{i} \circ f_{i}=\xi_{f_{i}}$. For different indices i and j, there can be at most finitely many elements $x \in A_{i} \cap A_{j}$ for which $\eta_{i}(x) \neq \eta_{j}(x)$, by the compatibility of the family. So in the whole of A there are at most finitely many x such that either $x \notin \bigcup_{i=1}^{n} \operatorname{Im}\left(f_{i}\right)$, or for some $i \neq j, x \in A_{i} \cap A_{j}$ and $\eta_{i}(x) \neq \eta_{j}(x)$. Let the finite set of such x 's be E. Then define $\eta: A \rightarrow X$ by: $\eta(x)=\eta_{i}(x)$, if $x \notin E$ and $x \in A_{i}$ (it doesn't matter which i we choose), and let $\eta(x)$ be an arbitrary element of X if $x \in E$. Then $[\eta]$ is an amalgamation for the family $\left\{\left[\xi_{f_{i}}\right] \mid 1 \leq i \leq n\right\}$ and hence, by compatibility, for the original family we started with.

Solution to Exercise 6.

$\mathrm{a}) \Rightarrow \mathrm{b})$: suppose A an object of $\mathcal{C}, x, y \in F(A)$ such that for all $\phi: I \rightarrow A$ we have $x \phi=y \phi$. We have to prove that $x=y$, but by assumption a) it is sufficient to prove that $A \Vdash_{J} \neg \neg(x=y)$, which, after some elementary logical operations, is equivalent to:
(*) For every arrow $B \xrightarrow{f} A$, if $\emptyset \notin \operatorname{Cov}(B)$ then there is an arrow $C \xrightarrow{g} B$ such that $\emptyset \notin \operatorname{Cov}(C)$ and $x f g=y f g$.

But given such $f: B \rightarrow A$ with $\emptyset \notin \operatorname{Cov}(B)$, we have some $g: I \rightarrow B$ by our assumptions on the site ($\mathcal{C}, \operatorname{Cov})$. By hypothesis on A and x, y, we have $x f g=y f g$. So we have proved $\left(^{*}\right)$.
$\mathrm{b}) \Rightarrow \mathrm{a}$): Suppose $A \Vdash_{J} \neg \neg(x=y)$ (which is equivalent to $\left(^{*}\right)$ above, as we saw), and let $f: I \rightarrow A$ be an arrow. By $(*)$ there is an arrow $C \xrightarrow{g} I$ such that $x f g=y f g$ and $\emptyset \notin \operatorname{Cov}(C)$. This last fact gives us some map $I \rightarrow C$, so we know that $g: C \rightarrow I$ is split epi; let $h: I \rightarrow C$ be a retraction. Then $x f g=y f g$, hence

$$
x f=x f g h=y f g h=y f
$$

The map $f: I \rightarrow A$ was arbitrary, so we conclude that the hypothesis of part b) is satisfied. Hence $x=y$. Because also A wa sarbitrary, we conclude that F is $\neg \neg$-separated, as was to be shown.

