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Exercise 21 Let K : N → N, G : N
k+1 → N and H : N

k+3 → N be functions. Define F by:

F (0, ~y, x) = G(~y, x)
F (z + 1, ~y, x) = H(z, F (z, ~y, K(x)), ~y, x)

Suppose that G, H and K are primitive recursive.

a) Prove directly, using the pairing function j and suitably adapting the proof of proposi-
tion 2.1.9: if ∀x(K(x) ≤ x), then F is primitive recursive.

b) Define a new function F ′ by:

F ′(0, m, ~y, x) = G(~y, Km(x))

F ′(n + 1, m, ~y, x) = H(n, F ′(n, m, ~y, x), ~y, Km−̇(n+1)(x))

Recall that Km−̇(n+1) means: the function K applied m−̇(n + 1) times.

Prove: if n ≤ m then ∀k[F ′(n, m + k, ~y, x) = F ′(n, m, ~y, Kk(x))]

c) Prove by induction: F (z, ~y, x) = F ′(z, z, ~y, x) and conclude that F is primitive recursive,
also without the assumption that K(x) ≤ x.

Solution: There is more than one way to solve a), which was the most challenging part of the
exercise. Define the function F̌ by:

F̌ (z, ~y, x) = 〈F (z, ~y, 0), . . . , F (z, ~y, x)〉

Then F (z, ~y, x) = (F̌ (z, ~y, x))x, so if we can show that F̌ is primitive recursive, then so is F , being
defined from F̌ by composition with primitive recursive functions.
Define an auxiliary function L by

L(z, u, ~y, x) = 〈H(z, (u)K(0), ~y, 0), . . . , H(z, (u)K(x), ~y, x)〉

Then
L(z, u, ~y, 0) = 〈H(z, (u)K(0), 0)〉

L(z, u, ~y, x + 1) = L(z, u, ~y, x) ∗ 〈H(z, (u)K(x+1), ~y, x + 1)〉

so L is defined by primitive recursion from primitive recursive functions, hence primitive recursive.
Now for F̌ we have:

F̌ (0, ~y, x) = 〈G(~y, 0), . . . , G(~y, x)〉
F̌ (z + 1, ~y, x) = L(z, F̌ (z, ~y, x), ~y, x)

(this takes a few lines of checking!) where in the first line we have a function defined by course-
of-values recursion from G (so primitive recursive); and F̌ is defined by primitive recursion; so it
is primitive recursive.
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b) The only point here is to get the induction right. If one wishes to show ∀n ≤ m P (m) then it
suffices to show: P (0) and for all n < m, if P (n) then P (n + 1).

For n = 0 we have F ′(n, m + k, ~y, x) = F ′(0, m + k, ~y, x) = G(~y, Km+k(x)) and also

F ′(n, m, ~y, Kk(x)) = F ′(0, m, ~y, Kk(x)) = G(~y, Km(Kk(x))) = G(~y, Km+k(x)

so the statement holds for n = 0. Suppose n < m and the statement holds for n. Since
n < m hence n + 1 ≤ m, we have m + k−̇(n + 1) = (m−̇(n + 1)) + k (this is the point
where the assumption n < m is used! This does not hold in general!), so using the induc-

tion hypothesis we have: F ′(n + 1, m + k, ~y, x) = H(n, F ′(n, m + k, ~y, x), ~y, Km+k−̇(n+1)(x)) =

H(n, F ′(n, m, ~y, Kk(x)), ~y, Km−̇(n+1)(Kk(x))) = F ′(n + 1, m, ~y, Kk(x)). This completes the in-
duction step.

c) We have F (0, ~y, x) = G(~y, x) and F ′(0, 0, ~y, x) = G(~y, K0(x)) = G(~y, x), so for z = 0 the
statement holds.

Suppose the statement holds for z. Since z + 1−̇(z + 1) = 0 we have: F ′(z + 1, z + 1, ~y, x) =
H(z, F ′(z, z + 1, ~y, x), ~y, x) = H(z, F ′(z, z, ~y, K(x)), ~y, x)) = H(z, F (z, ~y, K(x)), ~y, x) = F (z +
1, ~y, x), which completes the induction step.
We see that the function F is defined by composition from F ′ (and projection functions); hence
F is primitive recursive. Since we have never used that K(x) ≤ x in this proof, F is primitive
recursive without this assumption.

Exercise 35.Prove Smullyan’s Simultaneous Recursion Theorem: given two binary partial recur-
sive functions F and G, for every k there exist indices a and b satisfying for all x1, . . . , xk:

a·(x1, . . . , xk) ≃ F (a, b)·(x1, . . . , xk)

and
b·(x1, . . . , xk) ≃ G(a, b)·(x1, . . . , xk)

Solution: First, use the Recursion Theorem to find an index α such that for all y, x1, . . . , xk:

α·(y, x1, . . . , xk) ≃ F (S1
k(α, y), y)·(x1, . . . , xk)

Then, again applying the Recursion Theorem, find index β such that for all x1, . . . , xk:

β·(x1, . . . , xk) ≃ G(S1
k(α, β), β)·(x1, . . . , xk)

Let b = β and a = S1
k(α, β). Then:

a·(~x) ≃ S1
k(α, β)·(~x)

≃ α·(β, ~x)
≃ F (S1

k(α, β), β)·(~x)
≃ F (a, b)·(~x)

and
b·(~x) ≃ β·(~x)

≃ G(S1
k(α, β), β)·(~x)

≃ G(a, b)·(~x)

Exercise 55: Conclude from Theorem 3.3.3 that there cannot exist a total recursive function F

which is such that for all e: φe is constant on its domain if and only if F (e) ∈ K.

Solution: Suppose there were such F . Then we have that

X = {e |φe is constant on its domain}

is reducible to K via F , so X would be r.e. by Exercise 43.
It is also clear from the definition that X is extensional for indices of partial recursive functions.
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Therefore, by Myhill-Shepherdson (3.3.3. part 1)), the set F = {φe | e ∈ X} is open in PR.
However, this would mean (by the remarks following Exercise 53) that F is upwards closed.

Since F contains the empty function, therefore F would be the set of all partial recursive functions;
so every partial recursive function would be constant on its domain. This is clearly false.

Exercise 72: Find for each of the following relations an n, as small as you can, such that they
are in Σn, Πn or ∆n:

i) {e | We is finite}

ii) {e | rge(φe) is infinite}

iii) {e | φe is constant (possibly partial)} = {e | φe has at most one value}

iv) {j(e, f) | We ≤m Wf}

v) {e | We is m-complete in Σ1}

Then, classify the first three of these completely, by showing that they are m-complete in the class
you found.

Solution: we do i) and ii) simultaneously. Let DomFin be the set {e | We is finite} and let RgeInf
be the set {e | rge(φe) is infinite}. We have:

e ∈ DomFin ⇔ ∃x∀y∀k(T (1, e, y, k) → y ≤ x)
e ∈ RgeInf ⇔ ∀x∃y∃k(T (1, e, y, k) ∧ U(k) > x)

From this we see that DomFin is in Σ2 and RgeInf is in Π2.
From the Kleene Normal Form Theorem we know that the set Tot= {e | ∀x∃yT (1, e, x, y)} is

m-complete in Π2 and its complement NTot = N − Tot is therefore m-complete in Σ2. Let g be
an index such that

g·(e, x) ≃

{

x if ∃z∀i < xT (1, e, i, (z)i)
undefined otherwise

Let G(e) = S1
1(g, e). We have: rge(φG(e)) is infinite if and only if WG(e) is infinite, if and only if

e ∈ Tot; so G reduces Tot to RgeInf and NTot to DomFin. Therefore, RgeInf is m-complete in
Π2 and DomFin is m-complete in Σ2.

iii): let Const be the set from iii). We have

e ∈ Const ⇔ ∀uykl(T (1, e, u, k)∧ T (1, e, y, l) → U(k) = U(l))

which establishes that Const is in Π1.
Let g be an index satisfying:

g·(e, x) ≃

{

0 if ∀y ≤ x¬T (1, e, e, y)
z + 1 if z ≤ x is minimal with T (1, e, e, z)

Let G(e) = S1
1(g, e). We see that G(e) ∈ Const precisely when e ∈ N −K. Since K is m-complete

in Σ1 hence N −K is m-complete in Π1, we see that Const is m-complete in Π1.

iv): We ≤m Wf if and only if there is a total recursive function φu such that We = φ−1
u (Wf ).

Therefore We ≤m Wf holds, if and only if the following condition is satisfied:

∃u [∀x∃yT (1, u, x, y)
∧
∀zvw∃a(T (1, e, z, v) ∧ T (1, u, z, w) → T (1, f, U(w), a))
∧
∀bcd∃g(T (1, u, b, c)∧ T (1, f, U(c), d) → T (1, e, b, g)]
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We have an existential quantifier before an intersection of Π2-sets. Since Π2 is closed under
intersections (proposition 4.2.4), the set {j(e, f) |We ≤m Wf} is in Σ3.

v): We is m-complete in Σ1 if and only if K ≤m We. So the set of v) is in Σ3 by the result of iv).

Exercise 77. Prove that for a set X ⊆ N the following assertions are equivalent:

i) X is creative

ii) X is 1-complete in Σ1;

iii) X is m-complete in Σ1;

iv) There is a total recursive bijective function h such that h[X ] = K

Hint: use Exercises 75-76, proposition 4.3.5 and Theorem 4.3.3.

Solution: it is necessary to prove first that K is 1-complete in Σ1. In fact the usual proof of
m-completeness of K works, because Smn-functions can be assumed to be injective.
i)⇒ii): Suppose X is creative. Then by 4.3.5, K ≤1 X . Since K is 1-complete, X is.
ii)⇒iii): trivial.
iii)⇒iv): Suppose X is m-complete in Σ1. Then K ≤m X . Since K is creative by Exercise 75, X is
creative by Exercise 76iii); so K ≤1 X . Because K is 1-complete we also have X ≤1 K. Statement
iv) now follows from Theorem 4.3.3.
iv)⇒i): Suppose h : N → N is a total recursive bijection with h[X ] = K. Let G be primitive
recursive such that WG(e) = h[We] for all e. By 4.3.4, we may assume that K is creative via a
total recursive, injective function H . Let F (e) = h−1(H(G(e))). We claim that X is creative
via F . Indeed, suppose We ∩ X = ∅. Then WG(e) ∩ K = ∅. So H(G(e)) 6∈ WG(e) ∪ K. Then
F (e) = h−1(H(G(e))) 6∈ We ∪ X .

Exercise 87. Given sets A and B, prove that the following assertions are equivalent:

i) B ≤T A

ii) There exist total recursive functions F and G such that the following holds:

x ∈ B if and only if ∃σ(σ ∈ WF (x) ∧ ∀i < lh(σ)(σ)i = χA(i))
x 6∈ B if and only if ∃σ(σ ∈ WG(x) ∧ ∀i < lh(σ)(σ)i = χA(i))

(Hint: use proposition 5.1.8.)

Solution: i)⇒ii): suppose i) holds. By proposition 5.1.8 we know that there is a number e such
that for all x:

x ∈ B if and only if ∃σ(σ � χA ∧ ∃w(T σ(1, e, x, w) ∧ U(w) = 0))
x 6∈ B if and only if ∃σ(σ � χA ∧ ∃w(T σ(1, e, x, w) ∧ U(w) = 1))

where we use σ � χA as short for: ∀i < lh(σ) (σ)i = χA(i). Let f and g be indices such that

f ·(x, y) ≃

{

0 if ∃w(T y(1, e, x, w) ∧ U(w) = 0)
undefined otherwise

g·(x, y) ≃

{

0 if ∃w(T y(1, e, x, w) ∧ U(w) = 1)
undefined otherwise

and put F (x) = S1
1(g, x), G(x) = S1

1(g, x). Then

WF (x) = {σ | ∃w(T σ(1, e, x, w) ∧ U(w) = 0)}
WG(x) = {σ | ∃w(T σ(1, e, x, w) ∧ U(w) = 1)}
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Then ii) holds: suppose x ∈ B. Then by the choice of e we have ∃σ(σ � χA ∧ ∃w(T σ(1, e, x, w) ∧
U(w) = 0)) so ∃σ(σ � χA ∧ σ ∈ WF (x)). The converse is immediate; and a similar equivalence
holds for x 6∈ B.

ii)⇒i): suppose ii) holds. In order to determine χB(x), find the least pair 〈σ, w〉 satisfying σ � χA

and w testifies that σ ∈ WF (x) or σ ∈ WG(x). Note that only one of the two can happen. Output
0 if σ ∈ WF (x) and 1 if σ ∈ WG(x). This is recursive in A, so B ≤T A.
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