Computability Theory 2013 Solutions of Hand-in Exercises

Jaap van Oosten
Department of Mathematics
Utrecht University

Spring 2013

Exercise 21 Let $K: \mathbb{N} \rightarrow \mathbb{N}, G: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ and $H: \mathbb{N}^{k+3} \rightarrow \mathbb{N}$ be functions. Define F by:

$$
\begin{aligned}
F(0, \vec{y}, x) & =G(\vec{y}, x) \\
F(z+1, \vec{y}, x) & =H(z, F(z, \vec{y}, K(x)), \vec{y}, x)
\end{aligned}
$$

Suppose that G, H and K are primitive recursive.
a) Prove directly, using the pairing function j and suitably adapting the proof of proposition 2.1.9: if $\forall x(K(x) \leq x)$, then F is primitive recursive.
b) Define a new function F^{\prime} by:

$$
\begin{aligned}
F^{\prime}(0, m, \vec{y}, x) & =G\left(\vec{y}, K^{m}(x)\right) \\
F^{\prime}(n+1, m, \vec{y}, x) & =H\left(n, F^{\prime}(n, m, \vec{y}, x), \vec{y}, K^{m \dot{-}(n+1)}(x)\right)
\end{aligned}
$$

Recall that $K^{m \dot{-}(n+1)}$ means: the function K applied $m \dot{-}(n+1)$ times.
Prove: if $n \leq m$ then $\forall k\left[F^{\prime}(n, m+k, \vec{y}, x)=F^{\prime}\left(n, m, \vec{y}, K^{k}(x)\right)\right]$
c) Prove by induction: $F(z, \vec{y}, x)=F^{\prime}(z, z, \vec{y}, x)$ and conclude that F is primitive recursive, also without the assumption that $K(x) \leq x$.

Solution: There is more than one way to solve a), which was the most challenging part of the exercise. Define the function \check{F} by:

$$
\check{F}(z, \vec{y}, x)=\langle F(z, \vec{y}, 0), \ldots, F(z, \vec{y}, x)\rangle
$$

Then $F(z, \vec{y}, x)=(\check{F}(z, \vec{y}, x))_{x}$, so if we can show that \check{F} is primitive recursive, then so is F, being defined from \check{F} by composition with primitive recursive functions.
Define an auxiliary function L by

$$
L(z, u, \vec{y}, x)=\left\langle H\left(z,(u)_{K(0)}, \vec{y}, 0\right), \ldots, H\left(z,(u)_{K(x)}, \vec{y}, x\right)\right\rangle
$$

Then

$$
\begin{aligned}
L(z, u, \vec{y}, 0) & =\left\langle H\left(z,(u)_{K(0)}, 0\right)\right\rangle \\
L(z, u, \vec{y}, x+1) & =L(z, u, \vec{y}, x) *\left\langle H\left(z,(u)_{K(x+1)}, \vec{y}, x+1\right)\right\rangle
\end{aligned}
$$

so L is defined by primitive recursion from primitive recursive functions, hence primitive recursive. Now for \check{F} we have:

$$
\begin{aligned}
\check{F}(0, \vec{y}, x) & =\langle G(\vec{y}, 0), \ldots, G(\vec{y}, x)\rangle \\
\check{F}(z+1, \vec{y}, x) & =L(z, \check{F}(z, \vec{y}, x), \vec{y}, x)
\end{aligned}
$$

(this takes a few lines of checking!) where in the first line we have a function defined by course-of-values recursion from G (so primitive recursive); and \check{F} is defined by primitive recursion; so it is primitive recursive.
b) The only point here is to get the induction right. If one wishes to show $\forall n \leq m P(m)$ then it suffices to show: $P(0)$ and for all $n<m$, if $P(n)$ then $P(n+1)$.

For $n=0$ we have $F^{\prime}(n, m+k, \vec{y}, x)=F^{\prime}(0, m+k, \vec{y}, x)=G\left(\vec{y}, K^{m+k}(x)\right)$ and also

$$
F^{\prime}\left(n, m, \vec{y}, K^{k}(x)\right)=F^{\prime}\left(0, m, \vec{y}, K^{k}(x)\right)=G\left(\vec{y}, K^{m}\left(K^{k}(x)\right)\right)=G\left(\vec{y}, K^{m+k}(x)\right.
$$

so the statement holds for $n=0$. Suppose $n<m$ and the statement holds for n. Since $n<m$ hence $n+1 \leq m$, we have $m+k \dot{-}(n+1)=(m \dot{-}(n+1))+k$ (this is the point where the assumption $n<m$ is used! This does not hold in general!), so using the induction hypothesis we have: $F^{\prime}(n+1, m+k, \vec{y}, x)=H\left(n, F^{\prime}(n, m+k, \vec{y}, x), \vec{y}, K^{m+k \dot{-}(n+1)}(x)\right)=$ $H\left(n, F^{\prime}\left(n, m, \vec{y}, K^{k}(x)\right), \vec{y}, K^{m \dot{-}(n+1)}\left(K^{k}(x)\right)\right)=F^{\prime}\left(n+1, m, \vec{y}, K^{k}(x)\right)$. This completes the induction step.
c) We have $F(0, \vec{y}, x)=G(\vec{y}, x)$ and $F^{\prime}(0,0, \vec{y}, x)=G\left(\vec{y}, K^{0}(x)\right)=G(\vec{y}, x)$, so for $z=0$ the statement holds.

Suppose the statement holds for z. Since $z+1 \dot{-}(z+1)=0$ we have: $F^{\prime}(z+1, z+1, \vec{y}, x)=$ $\left.H\left(z, F^{\prime}(z, z+1, \vec{y}, x), \vec{y}, x\right)=H\left(z, F^{\prime}(z, z, \vec{y}, K(x)), \vec{y}, x\right)\right)=H(z, F(z, \vec{y}, K(x)), \vec{y}, x)=F(z+$ $1, \vec{y}, x)$, which completes the induction step.
We see that the function F is defined by composition from F^{\prime} (and projection functions); hence F is primitive recursive. Since we have never used that $K(x) \leq x$ in this proof, F is primitive recursive without this assumption.
Exercise 35.Prove Smullyan's Simultaneous Recursion Theorem: given two binary partial recursive functions F and G, for every k there exist indices a and b satisfying for all x_{1}, \ldots, x_{k} :

$$
a \cdot\left(x_{1}, \ldots, x_{k}\right) \simeq F(a, b) \cdot\left(x_{1}, \ldots, x_{k}\right)
$$

and

$$
b \cdot\left(x_{1}, \ldots, x_{k}\right) \simeq G(a, b) \cdot\left(x_{1}, \ldots, x_{k}\right)
$$

Solution: First, use the Recursion Theorem to find an index α such that for all y, x_{1}, \ldots, x_{k} :

$$
\alpha \cdot\left(y, x_{1}, \ldots, x_{k}\right) \simeq F\left(S_{k}^{1}(\alpha, y), y\right) \cdot\left(x_{1}, \ldots, x_{k}\right)
$$

Then, again applying the Recursion Theorem, find index β such that for all x_{1}, \ldots, x_{k} :

$$
\beta \cdot\left(x_{1}, \ldots, x_{k}\right) \simeq G\left(S_{k}^{1}(\alpha, \beta), \beta\right) \cdot\left(x_{1}, \ldots, x_{k}\right)
$$

Let $b=\beta$ and $a=S_{k}^{1}(\alpha, \beta)$. Then:

$$
\begin{aligned}
a \cdot(\vec{x}) & \simeq S_{k}^{1}(\alpha, \beta) \cdot(\vec{x}) \\
& \simeq \alpha \cdot(\beta, \vec{x}) \\
& \simeq F\left(S_{k}^{1}(\alpha, \beta), \beta\right) \cdot(\vec{x}) \\
& \simeq F(a, b) \cdot(\vec{x})
\end{aligned}
$$

and

$$
\begin{aligned}
b \cdot(\vec{x}) & \simeq \beta \cdot(\vec{x}) \\
& \simeq G\left(S_{k}^{1}(\alpha, \beta), \beta\right) \cdot(\vec{x}) \\
& \simeq G(a, b) \cdot(\vec{x})
\end{aligned}
$$

Exercise 55: Conclude from Theorem 3.3.3 that there cannot exist a total recursive function F which is such that for all $e: \phi_{e}$ is constant on its domain if and only if $F(e) \in \mathcal{K}$.
Solution: Suppose there were such F. Then we have that

$$
X=\left\{e \mid \phi_{e} \text { is constant on its domain }\right\}
$$

is reducible to \mathcal{K} via F, so X would be r.e. by Exercise 43 .
It is also clear from the definition that X is extensional for indices of partial recursive functions.

Therefore, by Myhill-Shepherdson (3.3.3. part 1)), the set $F=\left\{\phi_{e} \mid e \in X\right\}$ is open in $\mathcal{P} \mathcal{R}$.
However, this would mean (by the remarks following Exercise 53) that F is upwards closed. Since F contains the empty function, therefore F would be the set of all partial recursive functions; so every partial recursive function would be constant on its domain. This is clearly false.

Exercise 72: Find for each of the following relations an n, as small as you can, such that they are in Σ_{n}, Π_{n} or Δ_{n} :
i) $\left\{e \mid W_{e}\right.$ is finite $\}$
ii) $\left\{e \mid \operatorname{rge}\left(\phi_{e}\right)\right.$ is infinite $\}$
iii) $\left\{e \mid \phi_{e}\right.$ is constant (possibly partial) $\}=\left\{e \mid \phi_{e}\right.$ has at most one value $\}$
iv) $\left\{j(e, f) \mid W_{e} \leq_{m} W_{f}\right\}$
v) $\left\{e \mid W_{e}\right.$ is m-complete in $\left.\Sigma_{1}\right\}$

Then, classify the first three of these completely, by showing that they are m-complete in the class you found.

Solution: we do i) and ii) simultaneously. Let DomFin be the set $\left\{e \mid W_{e}\right.$ is finite $\}$ and let RgeInf be the set $\left\{e \mid \operatorname{rge}\left(\phi_{e}\right)\right.$ is infinite $\}$. We have:

$$
\begin{aligned}
e \in \text { DomFin } & \Leftrightarrow \exists x \forall y \forall k(T(1, e, y, k) \rightarrow y \leq x) \\
e \in \text { RgeInf } & \Leftrightarrow \forall x \exists y \exists k(T(1, e, y, k) \wedge U(k)>x)
\end{aligned}
$$

From this we see that DomFin is in Σ_{2} and RgeInf is in Π_{2}.
From the Kleene Normal Form Theorem we know that the set Tot $=\{e \mid \forall x \exists y T(1, e, x, y)\}$ is m-complete in Π_{2} and its complement $\operatorname{NTot}=\mathbb{N}-$ Tot is therefore m-complete in Σ_{2}. Let g be an index such that

$$
g \cdot(e, x) \simeq\left\{\begin{aligned}
x & \text { if } \exists z \forall i<x T\left(1, e, i,(z)_{i}\right) \\
\text { undefined } & \text { otherwise }
\end{aligned}\right.
$$

Let $G(e)=S_{1}^{1}(g, e)$. We have: $\operatorname{rge}\left(\phi_{G(e)}\right)$ is infinite if and only if $W_{G(e)}$ is infinite, if and only if $e \in$ Tot; so G reduces Tot to RgeInf and NTot to DomFin. Therefore, RgeInf is m-complete in Π_{2} and DomFin is m-complete in Σ_{2}.
iii): let Const be the set from iii). We have

$$
e \in \text { Const } \Leftrightarrow \forall u y k l(T(1, e, u, k) \wedge T(1, e, y, l) \rightarrow U(k)=U(l))
$$

which establishes that Const is in Π_{1}.
Let g be an index satisfying:

$$
g \cdot(e, x) \simeq\left\{\begin{aligned}
0 & \text { if } \forall y \leq x \neg T(1, e, e, y) \\
z+1 & \text { if } z \leq x \text { is minimal with } T(1, e, e, z)
\end{aligned}\right.
$$

Let $G(e)=S_{1}^{1}(g, e)$. We see that $G(e) \in$ Const precisely when $e \in \mathbb{N}-\mathcal{K}$. Since \mathcal{K} is m-complete in Σ_{1} hence $\mathbb{N}-\mathcal{K}$ is m-complete in Π_{1}, we see that Const is m-complete in Π_{1}.
iv): $W_{e} \leq_{m} W_{f}$ if and only if there is a total recursive function ϕ_{u} such that $W_{e}=\phi_{u}^{-1}\left(W_{f}\right)$. Therefore $W_{e} \leq_{m} W_{f}$ holds, if and only if the following condition is satisfied:

$$
\begin{aligned}
\exists u & {[\forall x \exists y T(1, u, x, y)} \\
& \wedge \\
& \forall z v w \exists a(T(1, e, z, v) \wedge T(1, u, z, w) \rightarrow T(1, f, U(w), a)) \\
& \wedge \\
& \forall b c d \exists g(T(1, u, b, c) \wedge T(1, f, U(c), d) \rightarrow T(1, e, b, g)]
\end{aligned}
$$

We have an existential quantifier before an intersection of Π_{2}-sets. Since Π_{2} is closed under intersections (proposition 4.2.4), the set $\left\{j(e, f) \mid W_{e} \leq_{m} W_{f}\right\}$ is in Σ_{3}.
v): W_{e} is m-complete in Σ_{1} if and only if $\mathcal{K} \leq_{m} W_{e}$. So the set of v) is in Σ_{3} by the result of iv).

Exercise 77. Prove that for a set $X \subseteq \mathbb{N}$ the following assertions are equivalent:
i) X is creative
ii) X is 1-complete in Σ_{1};
iii) X is m-complete in Σ_{1};
iv) There is a total recursive bijective function h such that $h[X]=\mathcal{K}$

Hint: use Exercises 75-76, proposition 4.3.5 and Theorem 4.3.3.
Solution: it is necessary to prove first that \mathcal{K} is 1-complete in Σ_{1}. In fact the usual proof of m-completeness of \mathcal{K} works, because $S m n$-functions can be assumed to be injective.
i) $\Rightarrow \mathrm{ii})$: Suppose X is creative. Then by $4.3 .5, \mathcal{K} \leq_{1} X$. Since \mathcal{K} is 1 -complete, X is. ii) \Rightarrow iii): trivial.
iii $) \Rightarrow$ iv): Suppose X is m-complete in Σ_{1}. Then $\mathcal{K} \leq_{m} X$. Since \mathcal{K} is creative by Exercise $75, X$ is creative by Exercise 76 iii); so $\mathcal{K} \leq_{1} X$. Because \mathcal{K} is 1 -complete we also have $X \leq_{1} \mathcal{K}$. Statement iv) now follows from Theorem 4.3.3.
iv) \Rightarrow i): Suppose $h: \mathbb{N} \rightarrow \mathbb{N}$ is a total recursive bijection with $h[X]=\mathcal{K}$. Let G be primitive recursive such that $W_{G(e)}=h\left[W_{e}\right]$ for all e. By 4.3.4, we may assume that \mathcal{K} is creative via a total recursive, injective function H. Let $F(e)=h^{-1}(H(G(e)))$. We claim that X is creative via F. Indeed, suppose $W_{e} \cap X=\emptyset$. Then $W_{G(e)} \cap \mathcal{K}=\emptyset$. So $H(G(e)) \notin W_{G(e)} \cup \mathcal{K}$. Then $F(e)=h^{-1}(H(G(e))) \notin W_{e} \cup X$.

Exercise 87. Given sets A and B, prove that the following assertions are equivalent:
i) $B \leq_{T} A$
ii) There exist total recursive functions F and G such that the following holds:

$$
\begin{array}{lll}
x \in B & \text { if and only if } & \exists \sigma\left(\sigma \in W_{F(x)} \wedge \forall i<\operatorname{lh}(\sigma)(\sigma)_{i}=\chi_{A}(i)\right) \\
x \notin B & \text { if and only if } & \exists \sigma\left(\sigma \in W_{G(x)} \wedge \forall i<\operatorname{lh}(\sigma)(\sigma)_{i}=\chi_{A}(i)\right)
\end{array}
$$

(Hint: use proposition 5.1.8.)
Solution: i) \Rightarrow ii): suppose i) holds. By proposition 5.1 .8 we know that there is a number e such that for all x :

$$
\begin{array}{lll}
x \in B & \text { if and only if } & \exists \sigma\left(\sigma \preceq \chi_{A} \wedge \exists w\left(T^{\sigma}(1, e, x, w) \wedge U(w)=0\right)\right) \\
x \notin B & \text { if and only if } & \exists \sigma\left(\sigma \preceq \chi_{A} \wedge \exists w\left(T^{\sigma}(1, e, x, w) \wedge U(w)=1\right)\right)
\end{array}
$$

where we use $\sigma \preceq \chi_{A}$ as short for: $\forall i<\operatorname{lh}(\sigma)(\sigma)_{i}=\chi_{A}(i)$. Let f and g be indices such that

$$
\begin{aligned}
& f \cdot(x, y) \simeq\left\{\begin{array}{cl}
0 & \text { if } \exists w\left(T^{y}(1, e, x, w) \wedge U(w)=0\right) \\
\text { undefined } & \text { otherwise }
\end{array}\right. \\
& g \cdot(x, y) \simeq\left\{\begin{array}{cl}
0 & \text { if } \exists w\left(T^{y}(1, e, x, w) \wedge U(w)=1\right) \\
\text { undefined } & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

and put $F(x)=S_{1}^{1}(g, x), G(x)=S_{1}^{1}(g, x)$. Then

$$
\begin{aligned}
& W_{F(x)}=\left\{\sigma \mid \exists w\left(T^{\sigma}(1, e, x, w) \wedge U(w)=0\right)\right\} \\
& W_{G(x)}=\left\{\sigma \mid \exists w\left(T^{\sigma}(1, e, x, w) \wedge U(w)=1\right)\right\}
\end{aligned}
$$

Then ii) holds: suppose $x \in B$. Then by the choice of e we have $\exists \sigma\left(\sigma \preceq \chi_{A} \wedge \exists w\left(T^{\sigma}(1, e, x, w) \wedge\right.\right.$ $U(w)=0)$) so $\exists \sigma\left(\sigma \preceq \chi_{A} \wedge \sigma \in W_{F(x)}\right)$. The converse is immediate; and a similar equivalence holds for $x \notin B$.
ii) \Rightarrow i): suppose ii) holds. In order to determine $\chi_{B}(x)$, find the least pair $\langle\sigma, w\rangle$ satisfying $\sigma \preceq \chi_{A}$ and w testifies that $\sigma \in W_{F(x)}$ or $\sigma \in W_{G(x)}$. Note that only one of the two can happen. Output 0 if $\sigma \in W_{F(x)}$ and 1 if $\sigma \in W_{G(x)}$. This is recursive in A, so $B \leq_{T} A$.

