Computability Theory 2013 Solutions of Hand-in Exercises

Jaap van Oosten Department of Mathematics Utrecht University

Spring 2013

Exercise 21 Let $K : \mathbb{N} \to \mathbb{N}, G : \mathbb{N}^{k+1} \to \mathbb{N}$ and $H : \mathbb{N}^{k+3} \to \mathbb{N}$ be functions. Define F by:

$$\begin{array}{lcl} F(0,\vec{y},x) &=& G(\vec{y},x) \\ F(z+1,\vec{y},x) &=& H(z,F(z,\vec{y},K(x)),\vec{y},x) \end{array}$$

Suppose that G, H and K are primitive recursive.

- a) Prove directly, using the pairing function j and suitably adapting the proof of proposition 2.1.9: if $\forall x(K(x) \leq x)$, then F is primitive recursive.
- b) Define a new function F' by:

$$F'(0, m, \vec{y}, x) = G(\vec{y}, K^m(x))$$

$$F'(n+1, m, \vec{y}, x) = H(n, F'(n, m, \vec{y}, x), \vec{y}, K^{m-(n+1)}(x))$$

Recall that $K^{m-(n+1)}$ means: the function K applied $\dot{m-(n+1)}$ times.

Prove: if $n \leq m$ then $\forall k[F'(n, m+k, \vec{y}, x) = F'(n, m, \vec{y}, K^k(x))]$

c) Prove by induction: $F(z, \vec{y}, x) = F'(z, z, \vec{y}, x)$ and conclude that F is primitive recursive, also without the assumption that $K(x) \leq x$.

Solution: There is more than one way to solve a), which was the most challenging part of the exercise. Define the function \check{F} by:

$$\check{F}(z,\vec{y},x) = \langle F(z,\vec{y},0), \dots, F(z,\vec{y},x) \rangle$$

Then $F(z, \vec{y}, x) = (\check{F}(z, \vec{y}, x))_x$, so if we can show that \check{F} is primitive recursive, then so is F, being defined from \check{F} by composition with primitive recursive functions. Define an auxiliary function L by

$$L(z, u, \vec{y}, x) = \langle H(z, (u)_{K(0)}, \vec{y}, 0), \dots, H(z, (u)_{K(x)}, \vec{y}, x) \rangle$$

Then

$$\begin{array}{lll} L(z,u,\vec{y},0) &=& \langle H(z,(u)_{K(0)},0) \rangle \\ L(z,u,\vec{y},x+1) &=& L(z,u,\vec{y},x) * \langle H(z,(u)_{K(x+1)},\vec{y},x+1) \rangle \end{array}$$

so L is defined by primitive recursion from primitive recursive functions, hence primitive recursive. Now for \check{F} we have:

$$F(0, \vec{y}, x) = \langle G(\vec{y}, 0), \dots, G(\vec{y}, x) \rangle$$

$$\check{F}(z+1, \vec{y}, x) = L(z, \check{F}(z, \vec{y}, x), \vec{y}, x)$$

(this takes a few lines of checking!) where in the first line we have a function defined by courseof-values recursion from G (so primitive recursive); and \check{F} is defined by primitive recursion; so it is primitive recursive. b) The only point here is to get the induction right. If one wishes to show $\forall n \leq m P(m)$ then it suffices to show: P(0) and for all n < m, if P(n) then P(n+1).

For n = 0 we have $F'(n, m + k, \vec{y}, x) = F'(0, m + k, \vec{y}, x) = G(\vec{y}, K^{m+k}(x))$ and also

 $F'(n,m,\vec{y},K^k(x))=F'(0,m,\vec{y},K^k(x))=G(\vec{y},K^m(K^k(x)))=G(\vec{y},K^{m+k}(x))$

so the statement holds for n = 0. Suppose n < m and the statement holds for n. Since n < m hence $n + 1 \le m$, we have m + k - (n + 1) = (m - (n + 1)) + k (this is the point where the assumption n < m is used! This does not hold in general!), so using the induction hypothesis we have: $F'(n + 1, m + k, \vec{y}, x) = H(n, F'(n, m + k, \vec{y}, x), \vec{y}, K^{m+k-(n+1)}(x)) = H(n, F'(n, m, \vec{y}, K^k(x)), \vec{y}, K^{m-(n+1)}(K^k(x))) = F'(n + 1, m, \vec{y}, K^k(x))$. This completes the induction step.

c) We have $F(0, \vec{y}, x) = G(\vec{y}, x)$ and $F'(0, 0, \vec{y}, x) = G(\vec{y}, K^0(x)) = G(\vec{y}, x)$, so for z = 0 the statement holds.

Suppose the statement holds for z. Since z + 1 - (z + 1) = 0 we have: $F'(z + 1, z + 1, \vec{y}, x) = H(z, F'(z, z + 1, \vec{y}, x), \vec{y}, x) = H(z, F'(z, z, \vec{y}, K(x)), \vec{y}, x)) = H(z, F(z, \vec{y}, K(x)), \vec{y}, x) = F(z + 1, \vec{y}, x)$, which completes the induction step.

We see that the function F is defined by composition from F' (and projection functions); hence F is primitive recursive. Since we have never used that $K(x) \leq x$ in this proof, F is primitive recursive without this assumption.

Exercise 35. Prove Smullyan's Simultaneous Recursion Theorem: given two binary partial recursive functions F and G, for every k there exist indices a and b satisfying for all x_1, \ldots, x_k :

$$a \cdot (x_1, \ldots, x_k) \simeq F(a, b) \cdot (x_1, \ldots, x_k)$$

and

$$b \cdot (x_1, \ldots, x_k) \simeq G(a, b) \cdot (x_1, \ldots, x_k)$$

Solution: First, use the Recursion Theorem to find an index α such that for all y, x_1, \ldots, x_k :

$$\alpha \cdot (y, x_1, \dots, x_k) \simeq F(S_k^1(\alpha, y), y) \cdot (x_1, \dots, x_k)$$

Then, again applying the Recursion Theorem, find index β such that for all x_1, \ldots, x_k :

$$\beta \cdot (x_1, \ldots, x_k) \simeq G(S_k^1(\alpha, \beta), \beta) \cdot (x_1, \ldots, x_k)$$

Let $b = \beta$ and $a = S_k^1(\alpha, \beta)$. Then:

$$\begin{array}{rcl} a {\cdot} (\vec{x}) & \simeq & S^1_k(\alpha,\beta) {\cdot} (\vec{x}) \\ & \simeq & \alpha {\cdot} (\beta,\vec{x}) \\ & \simeq & F(S^1_k(\alpha,\beta),\beta) {\cdot} (\vec{x}) \\ & \simeq & F(a,b) {\cdot} (\vec{x}) \end{array}$$

and

$$\begin{array}{rcl} (\vec{x}) &\simeq & \beta {\cdot} (\vec{x}) \\ &\simeq & G(S^1_k(\alpha,\beta),\beta) {\cdot} (\vec{x}) \\ &\simeq & G(a,b) {\cdot} (\vec{x}) \end{array}$$

Exercise 55: Conclude from Theorem 3.3.3 that there cannot exist a total recursive function F which is such that for all $e: \phi_e$ is constant on its domain if and only if $F(e) \in \mathcal{K}$.

Solution: Suppose there were such F. Then we have that

 $b \cdot$

 $X = \{e \mid \phi_e \text{ is constant on its domain}\}$

is reducible to \mathcal{K} via F, so X would be r.e. by Exercise 43.

It is also clear from the definition that X is extensional for indices of partial recursive functions.

Therefore, by Myhill-Shepherdson (3.3.3. part 1)), the set $F = \{\phi_e \mid e \in X\}$ is open in \mathcal{PR} .

However, this would mean (by the remarks following Exercise 53) that F is upwards closed. Since F contains the empty function, therefore F would be the set of all partial recursive functions; so every partial recursive function would be constant on its domain. This is clearly false.

Exercise 72: Find for each of the following relations an n, as small as you can, such that they are in Σ_n , Π_n or Δ_n :

- i) $\{e \mid W_e \text{ is finite}\}$
- ii) $\{e \mid \operatorname{rge}(\phi_e) \text{ is infinite}\}$
- iii) $\{e \mid \phi_e \text{ is constant (possibly partial})\} = \{e \mid \phi_e \text{ has at most one value}\}$
- iv) $\{j(e,f) \mid W_e \leq_m W_f\}$
- v) $\{e \mid W_e \text{ is } m \text{-complete in } \Sigma_1\}$

Then, classify the first three of these *completely*, by showing that they are *m*-complete in the class you found.

Solution: we do i) and ii) simultaneously. Let DomFin be the set $\{e \mid W_e \text{ is finite}\}$ and let RgeInf be the set $\{e \mid \text{rge}(\phi_e) \text{ is infinite}\}$. We have:

$$\begin{array}{ll} e \in \operatorname{DomFin} & \Leftrightarrow & \exists x \forall y \forall k (T(1, e, y, k) \to y \leq x) \\ e \in \operatorname{RgeInf} & \Leftrightarrow & \forall x \exists y \exists k (T(1, e, y, k) \land U(k) > x) \end{array}$$

From this we see that DomFin is in Σ_2 and RgeInf is in Π_2 .

From the Kleene Normal Form Theorem we know that the set $\text{Tot} = \{e \mid \forall x \exists y T(1, e, x, y)\}$ is *m*-complete in Π_2 and its complement NTot = \mathbb{N} – Tot is therefore *m*-complete in Σ_2 . Let *g* be an index such that

$$g \cdot (e, x) \simeq \begin{cases} x & \text{if } \exists z \forall i < xT(1, e, i, (z)_i) \\ \text{undefined} & \text{otherwise} \end{cases}$$

Let $G(e) = S_1^1(g, e)$. We have: $\operatorname{rge}(\phi_{G(e)})$ is infinite if and only if $W_{G(e)}$ is infinite, if and only if $e \in \operatorname{Tot}$; so G reduces Tot to RgeInf and NTot to DomFin. Therefore, RgeInf is *m*-complete in Π_2 and DomFin is *m*-complete in Σ_2 .

iii): let Const be the set from iii). We have

$$e \in \text{Const} \Leftrightarrow \forall uykl(T(1, e, u, k) \land T(1, e, y, l) \rightarrow U(k) = U(l))$$

which establishes that Const is in Π_1 . Let g be an index satisfying:

$$g \cdot (e, x) \simeq \begin{cases} 0 & \text{if } \forall y \le x \neg T(1, e, e, y) \\ z + 1 & \text{if } z \le x \text{ is minimal with } T(1, e, e, z) \end{cases}$$

Let $G(e) = S_1^1(g, e)$. We see that $G(e) \in \text{Const}$ precisely when $e \in \mathbb{N} - \mathcal{K}$. Since \mathcal{K} is *m*-complete in Σ_1 hence $\mathbb{N} - \mathcal{K}$ is *m*-complete in Π_1 , we see that Const is *m*-complete in Π_1 .

iv): $W_e \leq_m W_f$ if and only if there is a total recursive function ϕ_u such that $W_e = \phi_u^{-1}(W_f)$. Therefore $W_e \leq_m W_f$ holds, if and only if the following condition is satisfied:

$$\begin{aligned} \exists u \quad [\forall x \exists y T(1, u, x, y) \\ & \land \\ & \forall zvw \exists a(T(1, e, z, v) \land T(1, u, z, w) \to T(1, f, U(w), a)) \\ & \land \\ & \forall bcd \exists g(T(1, u, b, c) \land T(1, f, U(c), d) \to T(1, e, b, g)] \end{aligned}$$

We have an existential quantifier before an intersection of Π_2 -sets. Since Π_2 is closed under intersections (proposition 4.2.4), the set $\{j(e, f) | W_e \leq_m W_f\}$ is in Σ_3 .

v): W_e is *m*-complete in Σ_1 if and only if $\mathcal{K} \leq_m W_e$. So the set of v) is in Σ_3 by the result of iv).

Exercise 77. Prove that for a set $X \subseteq \mathbb{N}$ the following assertions are equivalent:

- i) X is creative
- ii) X is 1-complete in Σ_1 ;
- iii) X is m-complete in Σ_1 ;
- iv) There is a total recursive bijective function h such that $h[X] = \mathcal{K}$

Hint: use Exercises 75-76, proposition 4.3.5 and Theorem 4.3.3.

Solution: it is necessary to prove first that \mathcal{K} is 1-complete in Σ_1 . In fact the usual proof of *m*-completeness of \mathcal{K} works, because *Smn*-functions can be assumed to be injective. i) \Rightarrow ii): Suppose *X* is creative. Then by 4.3.5, $\mathcal{K} \leq_1 X$. Since \mathcal{K} is 1-complete, *X* is. ii) \Rightarrow iii): trivial.

iii) \Rightarrow iv): Suppose X is *m*-complete in Σ_1 . Then $\mathcal{K} \leq_m X$. Since \mathcal{K} is creative by Exercise 75, X is creative by Exercise 76iii); so $\mathcal{K} \leq_1 X$. Because \mathcal{K} is 1-complete we also have $X \leq_1 \mathcal{K}$. Statement iv) now follows from Theorem 4.3.3.

iv) \Rightarrow i): Suppose $h : \mathbb{N} \to \mathbb{N}$ is a total recursive bijection with $h[X] = \mathcal{K}$. Let G be primitive recursive such that $W_{G(e)} = h[W_e]$ for all e. By 4.3.4, we may assume that \mathcal{K} is creative via a total recursive, injective function H. Let $F(e) = h^{-1}(H(G(e)))$. We claim that X is creative via F. Indeed, suppose $W_e \cap X = \emptyset$. Then $W_{G(e)} \cap \mathcal{K} = \emptyset$. So $H(G(e)) \notin W_{G(e)} \cup \mathcal{K}$. Then $F(e) = h^{-1}(H(G(e))) \notin W_e \cup X$.

Exercise 87. Given sets A and B, prove that the following assertions are equivalent:

- i) $B \leq_T A$
- ii) There exist total recursive functions F and G such that the following holds:

$$\begin{array}{ll} x \in B & \text{if and only if} \quad \exists \sigma(\sigma \in W_{F(x)} \land \forall i < \ln(\sigma)(\sigma)_i = \chi_A(i)) \\ x \notin B & \text{if and only if} \quad \exists \sigma(\sigma \in W_{G(x)} \land \forall i < \ln(\sigma)(\sigma)_i = \chi_A(i)) \end{array}$$

(Hint: use proposition 5.1.8.)

Solution: i) \Rightarrow ii): suppose i) holds. By proposition 5.1.8 we know that there is a number *e* such that for all *x*:

$$\begin{array}{ll} x \in B & \text{if and only if} \quad \exists \sigma (\sigma \preceq \chi_A \land \exists w (T^{\sigma}(1, e, x, w) \land U(w) = 0)) \\ x \notin B & \text{if and only if} \quad \exists \sigma (\sigma \preceq \chi_A \land \exists w (T^{\sigma}(1, e, x, w) \land U(w) = 1)) \end{array}$$

where we use $\sigma \preceq \chi_A$ as short for: $\forall i < \operatorname{lh}(\sigma) (\sigma)_i = \chi_A(i)$. Let f and g be indices such that

$$f \cdot (x, y) \simeq \begin{cases} 0 & \text{if } \exists w (T^y(1, e, x, w) \land U(w) = 0) \\ \text{undefined} & \text{otherwise} \end{cases}$$
$$g \cdot (x, y) \simeq \begin{cases} 0 & \text{if } \exists w (T^y(1, e, x, w) \land U(w) = 1) \\ \text{undefined} & \text{otherwise} \end{cases}$$

and put $F(x) = S_1^1(g, x), G(x) = S_1^1(g, x)$. Then

$$W_{F(x)} = \{ \sigma \mid \exists w (T^{\sigma}(1, e, x, w) \land U(w) = 0) \} \\ W_{G(x)} = \{ \sigma \mid \exists w (T^{\sigma}(1, e, x, w) \land U(w) = 1) \}$$

Then ii) holds: suppose $x \in B$. Then by the choice of e we have $\exists \sigma (\sigma \leq \chi_A \land \exists w (T^{\sigma}(1, e, x, w) \land U(w) = 0))$ so $\exists \sigma (\sigma \leq \chi_A \land \sigma \in W_{F(x)})$. The converse is immediate; and a similar equivalence holds for $x \notin B$.

ii) \Rightarrow i): suppose ii) holds. In order to determine $\chi_B(x)$, find the least pair $\langle \sigma, w \rangle$ satisfying $\sigma \leq \chi_A$ and w testifies that $\sigma \in W_{F(x)}$ or $\sigma \in W_{G(x)}$. Note that only one of the two can happen. Output 0 if $\sigma \in W_{F(x)}$ and 1 if $\sigma \in W_{G(x)}$. This is recursive in A, so $B \leq_T A$.