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Exercise 1 (Exercise 38 of the lecture notes). Let K : N→ N, G : Nk+1 →
N and H : Nk+3 → N be functions. Define F by:

F (0, ~y, x) = G(~y, x)
F (z + 1, ~y, x) = H(z, F (z, ~y,K(x)), ~y, x)

Suppose that G, H and K are primitive recursive.

a) (4 points) Prove directly, using the pairing function j and suitably
adapting the proof of proposition 3.9: if ∀x(K(x) ≤ x), then F is
primitive recursive.

b) (3 points) Define a new function F ′ by:

F ′(0,m, ~y, x) = G(~y,Km(x))

F ′(n+ 1,m, ~y, x) = H(n, F ′(n,m, ~y, x), ~y,Km−̇(n+1)(x))

Recall that Km−̇(n+1) means: the function K applied m−̇(n+1) times.

Prove: if n ≤ m then ∀k[F ′(n,m+ k, ~y, x) = F ′(n,m, ~y,Kk(x))]

c) (3 points) Prove by induction: F (z, ~y, x) = F ′(z, z, ~y, x) and conclude
that F is primitive recursive, also without the assumption that K(x) ≤
x.

Solution: There is more than one way to solve a), which was the most
challenging part of the exercise. Define the function F̌ by:

F̌ (z, ~y, x) = 〈F (z, ~y, 0), . . . , F (z, ~y, x)〉
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Then F (z, ~y, x) = (F̌ (z, ~y, x))x, so if we can show that F̌ is primitive re-
cursive, then so is F , being defined from F̌ by composition with primitive
recursive functions.
Define an auxiliary function L by

L(z, u, ~y, x) = 〈H(z, (u)K(0), ~y, 0), . . . ,H(z, (u)K(x), ~y, x)〉

Then

L(z, u, ~y, 0) = 〈H(z, (u)K(0), 0)〉
L(z, u, ~y, x+ 1) = L(z, u, ~y, x) ∗ 〈H(z, (u)K(x+1), ~y, x+ 1)〉

so L is defined by primitive recursion from primitive recursive functions,
hence primitive recursive.
Now for F̌ we have:

F̌ (0, ~y, x) = 〈G(~y, 0), . . . , G(~y, x)〉
F̌ (z + 1, ~y, x) = L(z, F̌ (z, ~y, x), ~y, x)

(this takes a few lines of checking!) where in the first line we have a function
defined by course-of-values recursion from G (so primitive recursive); and F̌
is defined by primitive recursion; so it is primitive recursive.

b) The only point here is to get the induction right. If one wishes to show
∀n ≤ mP (m) then it suffices to show: P (0) and for all n < m, if P (n) then
P (n+ 1).

For n = 0 we have F ′(n,m+k, ~y, x) = F ′(0,m+k, ~y, x) = G(~y,Km+k(x))
and also

F ′(n,m, ~y,Kk(x)) = F ′(0,m, ~y,Kk(x)) = G(~y,Km(Kk(x))) = G(~y,Km+k(x)

so the statement holds for n = 0. Suppose n < m and the statement holds
for n. Since n < m hence n+1 ≤ m, we have m+k−̇(n+1) = (m−̇(n+1))+k
(this is the point where the assumption n < m is used! This does not hold
in general!), so using the induction hypothesis we have:

F ′(n+ 1,m+ k, ~y, x) =

H(n, F ′(n,m+ k, ~y, x), ~y,Km+k−̇(n+1)(x)) =

H(n, F ′(n,m, ~y,Kk(x)), ~y,Km−̇(n+1)(Kk(x))) =
F ′(n+ 1,m, ~y,Kk(x))

This completes the induction step.

c) We have F (0, ~y, x) = G(~y, x) and F ′(0, 0, ~y, x) = G(~y,K0(x)) = G(~y, x),
so for z = 0 the statement holds.
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Suppose the statement holds for z. Since z + 1−̇(z + 1) = 0 we have:
F ′(z+1, z+1, ~y, x) = H(z, F ′(z, z+1, ~y, x), ~y, x) = H(z, F ′(z, z, ~y,K(x)), ~y, x)) =
H(z, F (z, ~y,K(x)), ~y, x) = F (z+1, ~y, x), which completes the induction step.
We see that the function F is defined by composition from F ′ (and projection
functions); hence F is primitive recursive. Since we have never used that
K(x) ≤ x in this proof, F is primitive recursive without this assumption.

Exercise 2 Given a natural number x > 0 and a prime number p, by ordp(x)
(the order of p at x) we mean the highest number n such that pn divides x.

a) (2 points) Give a formula ψ(v, x) in LPA (but you can use the abbre-
viations pr, pp and x�v from the notes) which expresses that x > 0, v
is prime and ordv(x) is even.

b) (2 points) Give also such a formula χ(v, x), expressing: x > 0, v is
prime and ordv(x) ≡ 1 (modulo 3).

c) (3 points) For the formula ψ(v, x) from a), prove:

PA ` ∀x[∀v ≤ x(pr(v)→ ψ(v, x))→ ∃y(y·y = x)]

d) (3 points) Prove in PA that “the root of a non-square is irrational”,
that is:

PA ` ∀xyz(x > 0 ∧ x·x = y·z·z → ∃v(y = v·v))

Solution: a) x > 0 ∧ pr(v) ∧ ∃y(y·y = x�v)
b) x > 0 ∧ pr(v) ∧ ∃y(y·y·y·v = x�v)
c) You will not be punished for assuming without proof that for x, y > 0 and
pr(v), (xy)�v = (x�v)(y�v) but let’s do this first: since (x�v)|x and (y�v)|y,
(x�v)(y�v)|xy and hence, since (x�v)(y�v) is a v-power by Exercise 56a) and
by the definition of (·)�v, (x�v)(y�v)|(xy�v). Conversely, if x = (x�v)·w and
y = (y�v)·z, then v 6 |wz and xy = (x�v)(y�v)wz, so (xy)�v|(x�v)(y�v).

To prove c) we employ well-founded induction. Let χ(x) be the formula

∀v ≤ x(pr(v)→ ψ(v, x))→ ∃y(yy = x)

and assume
(1) ∀x′ < xχ(x′)
(2) ∀v ≤ x(pr(v)→ ψ(v, x))
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We have to prove that x is a square. This is trivial if x ≤ 1 so let x > 1.
Then x has a prime divisor v by Proposition 4.5. By assumption (2), let y
satisfy x�v = yy. Then v|y so vv|x; let z satisfy x = vvz. We now have:

(3) x�v = vv(z�v)
(4) for pr(w), w 6= v, x�w = z�w

From (3) and assumption (2) we get that z�v is a square, and (4) says that
if pr(w) and w 6= v then z�w = x�w, hence also a square by assumption (2).
Now z < x so assumption (1) gives that z is a square, say z = kk. Then
x = (kv)(kv), hence a square, as desired.

By well-founded induction, we are done.
d) Suppose x > 0 and xx = yzz. We have to prove that y is a square, which
(again) is trivial if y ≤ 1. So, let y > 1 and v a prime divisor of y. We see
that (z�v)(z�v) ≤ (x�v)(x�v) so z�v ≤ x�v, so (z�v)|(x�v). Let x = x′(z�v),
z = z′(z�v). Then x′x′ = yz′z′ so

y�v = (yz′z′)�v = (x′�v)(x′�v)

so y�v is a square. The number v was an arbitrary prime divisor of y,
therefore by c) we can conclude that y is a square.

Remark: the induction in c) is necessary: without the induction axioms,
it is possible that there is a (nonstandard) model in which “

√
2 is rational”:

there are nonstandard elements p, q for which p2 = 2q2.

Exercise 3 This combines exercises 65 and 71 from the notes: give a
full proof of Theorem 4.13 but now, with “Σ1-formula” replaced by “∆1-
formula” (in definition 4.12).

Solution. For a primitive recursive function F , let us write ϕF for the
representing Σ1-formula constructed in the proof of 4.13. To be explicit:
If F is λx.0 then φF is z = 0
If F is λx.x+ 1 then φF is z = x+ 1
If F is λx1 · · ·xk.xi then ϕF is z = xi
If F (~x) = G(H1(~x), . . . ,Hm(~x)) then ϕF is

∃w1 · · ·wm(ϕH1(~x,w1) ∧ · · · ∧ ϕHm(~x,wm) ∧ ϕG(~w, z))

If F (~x, 0) = G(~x) and F (~x, y + 1) = H(~x, F (~x, y), y) then ϕF is

∃am(ϕG(~x, (a,m)0) ∧ ∀i < yϕH(~x, (a,m)i, i, (a,m)i+1) ∧ (a,m)y = z)

We prove the following things, all by induction on the definition of F as a
primitive recursive function:
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1. For all n1, . . . , nk ∈ N, PA ` ϕF (n1, . . . , nk, F (n1, . . . , nk))
2. PA ` ∀~x∃!zϕF (~x, z)
3. The formula ϕF is, in PA, equivalent to a Π1-formula.

For the basic functions, assertions 1–3 are immediate; note that ϕF is a
∆0-formula in these cases.

In the case of composition: F (~x) = G(H1(~x), . . . ,Hm(~x)) we assume
1–3 for ϕG, ϕH1 , . . . ϕHm .
1. Suppose ~x = x1, . . . , xk. Given n1, . . . , nk ∈ N we have
PA ` ϕH1(n1, . . . , nk, H1(n1, . . . , nk)),. . . , PA ` ϕHm(n1, . . . , nk, Hm(n1, . . . , nk))
and PA ` ϕG(H1(n1, . . . , nk), . . . ,Hm(n1, . . . , nk), F (n1, . . . , nk))
so

PA ` ∃~w(ϕH1(n1 . . . , nk, w1) ∧ · · · ∧ ϕHm(n1, . . . , nk, wm)

∧ϕG(~w, F (n1, . . . ,k )))

so PA ` ϕF (n1, . . . , nk, F (n1, . . . , nk)).
2. Reason in PA: given ~x, we have w1, . . . , wm with ϕH1(~x,w1), . . . , ϕHm(~x,wm),
by induction hypothesis on H1, . . . ,Hm. By induction hypothesis on G we
get a z with ϕG(w1, . . . , wm, z). So we have a z with ϕF (~x, z).

For uniqueness, suppose ϕF (~x, z)∧ϕF (~x, z′). Ten we have w1, . . . , wm, w
′
1, . . . , w

′
m

with ϕH1(~x,w1), . . . , ϕHm(~x,wm) and ϕH1(~x,w′1),. . . ,ϕHm(~x,w′m) and ϕG(~w, z),

ϕG( ~w′, z′). The uniqueness in the induction hypothesis for H1, . . . ,Hm gives
w1 = w′1,. . . ,wm = w′m; the uniqueness in the induction hypothesis for G
now gives z = z′

3. Let ψG be a Π1-formula such that PA ` ϕG(~x, z)↔ ψG(~x, z). Define the
formula ψ′(~x, z) by

∀~w(ϕH1(~x,w1) ∧ · · · ∧ ϕHm(~x,wm)→ ψG(~w, z))

Since the ϕHi are Σ1, the formula ψG is Π1, the logical equivalence ∀x(∃yA→
∀wB)↔ ∀xyw(A→ B) gives a Π1-formula ψF equivalent to ψ′F .

We prove that ψ′F is equivalent to ϕF . Given ~x, z, assume ψ′F (~x, z). By
property 2 forH1, . . . ,Hm, there are w1, . . . , wm with ϕH1(~x,w1),. . . ,ϕHm(~x,wm).
Hence by ψ′F (~x, z) we obtain ψG(~w, z) hence ϕG(~x, z). So we have ϕF (~x, z).

Conversely, suppose ϕF (~x, z) and assume ϕH1(~x,w1),. . . ,ϕHm(~x,wm).
By ϕF (~x, z) we find w′1, . . . , w

′
m such that

ϕH1(~x,w′1) ∧ · · · ∧ ϕHm(~x,w′m) ∧ ϕG(w′1, . . . , w
′
m, z)

The uniqueness in the induction hypothesis for H1, . . . ,Hm gives wi = w′i
for i = 1, . . . , n. So we get ϕG(~w, z) and hence ψG(~w, z) using the induction
hypothesis on G. Hence ψ′F (~x, z) follows.
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In the case of primitive recursion:
1. Given n1, . . . , nk, l we prove that PA ` ϕF (n1, . . . , nk, l, F (n1, . . . , nk, l))
by induction on l.

For l = 0 we must prove PA ` ∃am(ϕG(n1, . . . , nk, (a,m)0) ∧ (a,m)0 =
F (n1, . . . , nk)) which follows from 4.9 i).

Inductively, suppose PA ` ϕF (n1, . . . , nk, l, F (n1, . . . , nk, l)) so there is
a,m with

PA ` ϕG(n1, . . . , nk, (a,m)0) ∧ ∀i < lϕH(n1, . . . , nk, (a,m)i, i, (a,m)i+1)

∧(a,m)l = F (n1, . . . , nk, l)

By 4.9 ii), find b, n such that ∀i ≤ l(a,m)i = (b, n)i and (b, n)l+1 is the

unique w such that ϕH(n1, . . . , nk, (a,m)l, l, w). Then this (b, n) tesifies

that PA ` ϕF (n1, . . . , nk, l + 1, F (n1, . . . , nk, l + 1)).
2. In PA, let ~x, y be given; to show ∃zϕF (~x, y, z). Induction on y. For y = 0
this is similar to case 1: use 4.9 i). For the induction step one uses 4.9 ii)
again in a very similar way to the proof of 1.

To get uniqueness of z: suppose ϕF (~x, y, z) ∧ ϕF (~x, y, z′). Then there
are a,m, b, n such that

ϕG(~x, 0, (a,m)0) ∧ ∀i < yϕH(~x, (a,m)i, i, (a,m)i+1)
∧z = (a,m)y

ϕG(~x, 0, (b, n)0) ∧ ∀i < yϕH(~x, (b, n)i, i, (b, n)i+1)
∧z′ = (b, n)y

One proves, using the uniqueness in the induction hypothesis for G and H,
that ∀i ≤ y(a,m)i = (b, n)i, hence z = z′.
3. Let ψ′F (~x, y, z) be the formula

∀am(ϕG(~x, (a,m)0) ∧ ∀i < yϕH(~x, (a,m)i, i, (a,m)i+1)→
z = (a,m)y

and ψF the obvious Π1-equivalent of ψ′F . Again, one employs induction on
y to prove the equivalence

ϕF (~x, y, z)↔ ψ′(~x, y, z)

In the proof, one uses the uniqueness property in the induction hypothesis,
much in the way as property 3 was proved for composition.

Exercise 4. In this exercise, part h) is a bonus exercise and gives 1 point
extra (the total of points to be gained from this exercise is therefore 11).

Recall that the following functions are primitive recursive.
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The function assigning to x the Gödel number p¬χq if x is the Gödel
number of some formula χ. Otherwise, its value is 0.

The function assigning to (x, y, i) the Gödel number pχ[t/vi]q if x is
the Gödel number of some term t, y is the Gödel number of some
formula χ and t is free for vi in χ. Otherwise, its value is 0.

The function assigning to a number x the Gödel number pxq.

Let Neg, Sub and Num be formulas representing these functions in PA, in
such a way that the recursions of the latter two are provable in PA.

We define the sequence of theories (Tn)n∈N by recursion: T0 is PA and
for n ∈ N, Tn+1 is PA + ConTn .

a) Prove that Tn is consistent for every n ∈ N.
Thus, the given sequence is an ascending hierarchy of consistent the-
ories, where each theory claims the consistency of the previous one.
The goal of this exercise is to create a similar descending hierarchy,
where each theory claims the consistency of the next one.

Now define the formula φ(v0, v1) as:

∃a∃b∃c (¬∃xPrf(x, c)) ∧Neg(b, c) ∧ Sub(a, v0, 1, b) ∧Num(v1 + 1, a).

b) Apply the Diagonalisation Lemma to φ to obtain a formula ψ(v1) and
define Sn := PA+ψ (n). Show that, in PA, the formula ψ (n) naturally
expresses the consistency of Sn+1.
It may look as though we have our desired sequence. However, the Sn
also need to be consistent.

c) Prove that PA ` �(∀x ¬ψ(x)) → ∀x ¬ψ(x). (Please don’t explicitly
formalize the argument in PA; just make it clear that the argument
may be so formalized.)

d) Deduce that Sn is inconsistent for all n ∈ N. [Hint: use Löb’s Theorem]
This shows we have to be a bit more clever to solve our problem. Let
φ′(v0, v1) be the formula

¬
[
∃a∃b Prf(v1, b) ∧Neg(a, b) ∧ Sub

(
p0q, v0, 1, a

)]
→ φ(v0, v1).

e) As before, apply Lemma 5.1 to φ′ to obtain a formula ψ′(v1) and define
S′n := PA + ψ′ (n). Prove that S′0 is consistent.
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f) Show that, in PA, the formula ψ′ (n) naturally expresses the consistency
of S′n+1.

g) Prove that S′n is consistent for all n ∈ N.

h) Can you explain why the argument that showed the Sn to be incon-
sistent doesn’t work now?

Solution: whenever we use the term p·q in an LPA-expression, where · is
some expression with a Gödel number, we’ll just write p·q.

Solution a). By induction on n. Certainly, T0 = PA is consistent, since
it has N as a model. Suppose Tn is consistent for some n ∈ N. Then ConTn

is true in the standard model N . And again, all theorems of PA are true in
N . So N |= PA + ConTn = Tn+1, and in particular, Tn+1 is consistent. This
concludes the induction.

Solution b). The Diagonalisation Lemma gives a formula ψ(v1) such that
we have PA ` ∀v1 (ψ(v1) ↔ φ(pψ(v1)q, v1)). Taking v1 = n, we see that
PA ` ψ(n)↔ φ(pψ(v1)q, n). Notice that φ(pψ(v1)q, n) is the formula

∃a∃b∃c ¬�(c) ∧Neg(b, c) ∧ Sub(a, pψ(v1)q, 1, b) ∧Num(n+ 1, a). (1)

Now PA proves for such a, b, c, that a is the Gödel number of n+ 1, that b is
the Gödel number of ψ(n+ 1), and that c is the Gödel number of ¬ψ(n+ 1).
So PA ` ψ(n) ↔ (??) ↔ ¬�(p¬ψ(n+ 1)q). That is, ψ(n) is equivalent, in
PA, to the statement that the negation of ψ(n+ 1) is not provable, which
means exactly that Sn+1 is consistent.

Solution c). We have

PA ` �(p∀x ¬ψ(x)q)→ ∀x� ¬ψ(x̃). (2)

The above statement says that, given a proof of ∀x ¬ψ(x), we can find a
proof of the sentence that results when we substitute the x-th numeral in
¬ψ. Notice that PA proves that for all x, the x-th numeral is a closed term,
and therefore always freely substitutable. So we can show in PA that we can
transform a proof of ∀x ¬ψ(x) into the desired proof by one application of
∀E. Therefore, (??) indeed holds.

Now notice that ¬φ(pψ(x)q, x) is nothing else than �¬ψ(x̃+ 1). And
certainly, for every formula A(x), we have PA ` ∀x A(x)→ ∀x A(x+ 1). So
we get

PA ` ∀x� ¬ψ(x̃)→ ∀x ¬φ(pψ(x)q, x).
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Finally, by our construction of ψ, we have

PA ` ∀x ¬φ(pψ(x)q, x)→ ∀x ¬ψ(x).

Combining these yields the desired result.

Solution d). By the previous exercise and Löb’s theorem, PA ` ∀x ¬ψ(x).
So in particular, we have for all n ∈ N that PA ` ¬ψ(n), i.e. Sn is inconsis-
tent.

Solution e). Let us denote the antecedent of φ′ by ω(v0, v1). Then we
get a formula ψ′(v1) such that PA ` ∀v1 (ψ′(v1) ↔ (ω(pψ′(v1)q, v1) →
φ(pψ′(v1)q, v1))). Notice that ω(pψ′(v1)q, n) is the formula

¬
[
∃a∃b Prf(n, b) ∧Neg(a, b) ∧ Sub

(
p0q, pψ′(v1)q, 1, a

)]
For such a and b, PA proves that a is the Gödel number of ψ′(0), and that b
is the Gödel number of ¬ψ′(0). So, taking v1 = n, we get

PA ` ψ′(n)↔ (¬Prf(n, p¬ψ′(0)q)→ ¬�(p¬ψ′(n+ 1)q)). (3)

Suppose that S′0 is inconsistent, i.e. PA ` ¬ψ′(0). Let m be the smallest pos-
sible Gödel number of a proof of ¬ψ′(0). Then we have PA ` Prf(m, p¬ψ′(0)q),
while PA ` ¬Prf(i, p¬ψ′(0)q) for all i < m. Considering (??), we see that
PA ` ψ′(m), while PA ` ψ′(i) ↔ ¬�(p¬ψ′(i+ 1)q) for i < m. This means
that S′m = PA, while S′i is PA plus the statement expressing the consistency
of S′i+1, for i < m. Now by induction of j up to m, we can show that
S′m−j = Tj for j ≤ m. In particular, S′0 = Tm is consistent, by exercise a),
contradiction.

Solution f). Since S′0 is consistent, ¬ψ′(0) cannot be proven in PA. So for
all n ∈ N, we have PA ` ¬Prf(n, p¬ψ′(0)q). Now (??) gives PA ` ψ′(n) ↔
¬�(p¬ψ′(n+ 1)q)). Now follow the same reasoning as in exercise b).

Solution g). By induction on n. We have already proven that S′0 is consis-
tent. Suppose that S′n+1 is inconsistent for some n ∈ N, i.e. PA ` ¬ψ′(n+ 1).
By the rule D1, PA proves �(p¬ψ′(i+ 1)q), which we already know to be
equivalent in PA to ¬ψ′(n). So S′n is inconsistent as well. This concludes the
induction.

Solution h). In our first attempt, we didn’t only know that PA ` ψ(n) ↔
¬�(p¬ψ(n+ 1)q)) for each separate n ∈ N, but this property was given to
us uniformly as PA ` ∀v1 (ψ(v1) ↔ φ(pψ(v1)q, v1)). Through this state-
ment, the formula ψ(v1) basically refers to itself, and thus we were able to
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get the result in exercise c). Thanks to the ‘fail safe’ in our second attempt,
we cannot get this uniform statement. Indeed, in order to extract PA `
∀v1 (ψ′(v1) ↔ φ(pψ′(v1)q, v1)) from PA ` ∀v1 (ψ′(v1) ↔ (ω(pψ′(v1)q, v1) →
φ(pψ′(v1)q, v1))), we’d need that PA ` ∀v1 ω(pψ′(v1)q, v1). But this state-
ment is equivalent in PA to ¬∃v1Prf(v1, p¬ψ′(0)q), or even shorter: PA `
¬�(p¬ψ′(0)q). But PA will never prove any statement saying that some-
thing is unprovable. Indeed, such a statement entails the consistency of PA,
which we cannot prove in PA, by Gödel’s Second Incompleteness Theorem.

Exercise 5. Let M be a nonstandard model of PA.

a) (2 points) Show that, in M, there are nonstandard prime numbers.

b) (3 points) Show that, inM, there exist nonstandard elements m such
that m is divisible by every standard prime number.

c) (2 points) Let m be an element such as in b). Show that m has a
nonstandard prime divisor.

d) (3 points) Show that there exist nonstandard elements m and m′ such
that the set {x ∈ M|m ≤ x ≤ m + m′} does not contain any prime
number [Hint: for any natural number n, the sequence n! + 2, n! +
3, . . . , n! + n does not contain any prime number].

Solution: all these item use the fact that PA proves the infinitude of the
set of primes (Exercise 55), and Overspill (Corollary 6.3) for the standard
cut N.
a) Since M |= ∃y(y > n ∧ prime(y)) for all standard n, 6.3 gives at once
that alsoM |= ∃y(y > c∧prime(y)) for some nonstandard c. So inM there
are nonstandard prime numbers.
b) The factorial function x 7→ x! is primitive recursive, hence provably total
in PA, so the formula ∃x∀y(prime(y) ∧ y < n → y|x) holds in M for every
standard n; hence also for a nonstandard number c. Any element m ∈ M
for whichM |= ∀y(prime(y)∧y < c→ y|m) is a nonstandard number which
is divisible by all standard primes.
c) Let m in M be divisible by all standard prime numbers. Then M |=
∃y(y > n ∧ prime(y) ∧ y|m) for every standard number n, since there are
infinitely many standard prime numbers. Hence this also holds for some
nonstandard number, which implies that m is divisible by some nonstandard
prime.
d) We use the hint and the remark in the solution of b) about the factorial
function. We see that the formula ∃x∀y(x ≤ y ≤ x+n→ ¬prime(y)) is true
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in M for every standard n; therefore by Overspill there is a nonstandard
number m′ ∈ M and an element m ∈ M such that M |= ∀y(m ≤ y ≤
m + m′ → ¬prime(y)). Then m′ must also be nonstandard, because for
every standard element there is a standard prime above it.

Exercise 6.

a) (4 points) LetM be a countable model of PA. Show that every bounded
subset of M is definable in parameters from M, precisely when M is
(isomorphic to) the standard model.

b) (6 points) Let M be any model of PA. Show that M has an elemen-
tary extension M′ with the following property: for every subset X of
M there is a subset Y of M′ such that Y ∩M = X, and Y is defin-
able in M′ in parameters from M′. [Hint: use sequence coding, an
appropriate extension of the language, and the Compactness Theorem]

Solution: for a), the countability assumption was in fact redundant. In
the standard model, every bounded subset is finite, and hence definable.
In a nonstandard model, the set of standard elements is bounded, but not
definable by Lemma 6.2. If you wanted to use the countability condition (like
the one who formulated this exercise) you could say: take a nonstandard
element a. There are uncountably many subsets of M bounded by a, but
there can be only countably many subsets of M which are definable in
parameters from M, since the language LPA(M) is countable.

b) Let L′ be the language LPA(M)∪ {cX |X ⊆M} (a new constant cX for
every subset X of M). Let T ′ be the L′-theory consisting of all LPA(M)-
sentences which are true in M, together with all sentences {(cX)a = 0 | a ∈
X} and all sentences {(cX)a = 1 | a 6∈ X}.

First, let us see that T ′ is consistent. Every finite subtheory of T ′ con-
tains only finitely many sentences involving the constants cX , say (cX)a1 =
· · · = (cX)an = 0 and (cx)b1 = · · · = (cX)bm = 1. Now the facts about
sequence coding that we proved in PA ensure that

M |= ∃x((x)a1 = · · · = xan = 0 ∧ (x)b1 = · · · = (x)bm = 1)

and this means that every finite subtheory of T ′ is consistent; by Compact-
ness, T ′ is consistent and has therefore a model M′. Since M′ satisfies all
LPA(M)-sentences which hold in M, M′ is an elementary extension of M.
Furthermore, let cM

′
X be the interpretation of the constant cX in M′. Then

for any X ⊆M wwe have the set

Y = {a ∈M′ |M′ |= (cM
′

X )a = 0}
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which is definable in one parameter from M′, and satisfies Y ∩ M = X.
Note that part a) now implies that M′ is a proper extension of M.
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