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1 What is Intuitionism?

Intuitionism originates with the Dutch mathematician L.E.J. Brouwer (1881-
1966)*, who developed, in the years following 1905, a completely new philosophy
of mathematics. I’ll try to outline two basic points here, without attempting to
go too deeply into the quite sophisticated philosophical discussion which ensued
[the curious reader is referred to the books and papers of Troelstra, Beeson,
Bishop & Bridges and Smorynski in the references].

In order to understand these points it is perhaps useful to recall some devel-
opments in late 19th century mathematics which to some extent rocked the aver-
age mathematician’s working intuition. These were the creation of set theory by
Cantor, and the development of mathematical logic by Frege and Russell. Both
were very successful attempts to codify mathematics and mathematical think-
ing, and Russell went so far as to propose that mathematics was not more than
a deductive system, completely subsumed by logic. This view was also taken
by his pupil Wittgenstein who taught that mathematical truths are vacuous
tautologies.

Brouwer opposed this view vehemently. Against it he raised two related
philosophical issues [this is an extremely simplified picture]: solipsism and the
role of language.

e Solipsism states, in a crude form, that man is basically alone and has no
way of firmly establishing the existence of an outside world, let alone facts
about such a world.

Mathematics can therefore not be concerned with the discovery of abso-
lute truths which are, in some way or another, hidden ‘out there’. The

*Text for a minicourse given at BRICS, spring 1995

1 Apart from being, as we’ll see, a very original character, Brouwer was an extremely gifted
mathematician. He solved important open problems in topology, and the mathematical field
known as algebraic topology is essentially due to him. It is therefore that his philosophical
arguments carried authority, and that the debate about them raged so violently



mathematician [in this discussion there is often talk about ‘the mathe-
matician’. What is meant is an idealized mathematician, a representative
of mathematics as a whole, who makes no mistakes] has as his sole tools
some basic intuitions on which he can perform constructions.

What would such basic intuitions be? A ‘logicist’ as Russell might per-
haps take the notion of ‘set’, or operations from logic, as basic. Brouwer
accepted only one basic notion: time, mathematically seen as the real
line. For a set theorist the real numbers are Dedekind cuts or equiva-
lence classes of fundamental sequences, but for the intuitionist the reals
are there without needing any further qualification.

e Language is our means of communication, and in Brouwer’s view a very
defective one. In order to communicate his constructions to others, the
mathematician has to devise a codification of the mathematical notions
and a concise way of getting an argument across. Logic provides an instru-
ment for this, but it is very risky to generalize, by mere linguistic analogy,
laws of thought which are valid for finite structures to infinite ones: such
“laws” can easily be formulated is a system which then can be proved to
be free of contradiction, but nothing guarantees that they represent valid
inferences about the mathematical world.

One logical principle, obviously valid for statements about finite structures,
which came under Brouwer’s attack, was the principle of excluded middle (prin-
ciptum tertii ezclusi): for any statement ¢, either ¢ or its negation —¢ is true,
often encountered in the following form of reductio ad absurdum: if =y leads to
a contradiction, then ¢ must be true (the other form: if ¢ leads to contradic-
tion then =g is true, i1s perfectly acceptable to intuitionists; in fact this is the
definition of —p).

In trying to follow Brouwer’s main argument against this principle, bear in
mind that in the solipsistic mathematician’s universe a statement ¢ can only be
true if 7 have a mathematical construction establishing ¢!

It is very well possible that today’s theoretical computer scientists, raised as
they are with problems of decidability, have less problems than the mathemati-
cians of 80 years ago, in understanding the so-called “weak counterexamples”
with which Brouwer had in mind to refute the principle of excluded middle.

Let us then take an, as yet, undecided mathematical proposition (Fermat’s
last, that there are non nontrivial integer solutions to z” + y* = 2™ for n > 2,
was popular in books on intuitionism, but alas...?). There is of course an
infinity of them. For example:

1. Goldbach’s conjecture: every even natural number is the sum of two prime
numbers;

2. There is no sequence of 99 consecutive 9’s in the decimal expansion of 7.

2 As you know, this was recently proved by Wiles



Note that in both cases a counterexample is a finite piece of data, and can be
checked in finite time.
Now it is possible to define a real number « by the following Cauchy sequence

(ak>kew3

27k ik > ko and kg is the first
ap = counterexample to Goldbach’s conjecture;
27%  else

Everyone will agree that (ar)rew is a Cauchy sequence, and thus represents a
real number a.

Now in Brouwer’s view it makes no sense to say that either « = 0 or a > 0
since both statements imply a decision of Goldbach’s conjecture. The number
« is a so-called ‘floating number’.

Another example: take the sequence (bg)rew given by

(=2)~Fo if k > ko and kg is least such that after expanding 7 in ko
by = decimals; a sequence of 99 consecutive 9’s has been found;

(—2)_’“ else

Again, (bg)rew represents a real number 3; but now we cannot say 8 > 0 or
8 < 0 since either statement implies an unfounded opinion on the parity of the
length of a possible least expansion sequence of m exhibiting 99 9’s. On the
other hand, given two real numbers which are well apart, such as 0 and 1, it
is always true for any real number z, that z > 0 or z < 1; this follows by just
approximating them closely enough.

Once we take this kind of argument seriously, it has unexpected conse-
quences. For example, the intermediate value theorem of analysis breaks down:

INTERMEDIATE VALUE THEOREM
For every continuous function f on [0, a] with f(0) < 0 and f(a) > 0,
there is z € [0, a] with f(z) = 0.

DISPROOF. Let, for 3 as defined above, f on [0,3] be defined by:
f(z) = min{z — 1,0} + max{0,z — 2} +
Roughly, f looks like this:




Now suppose f has a zero z. Then, as we have argued before, either z < 2 or
z > 1 must hold; which implies respectively > 0 or § < 0.

I mention two other, generally accepted, ideas in mathematics which are in-
compatible with the intuitionistic refusal of excluded middle as a valid law of
thought: cardinality of finite sets and the well orderedness of the natural num-
bers.

o We call a set finite if it can be embedded into a set of the form {n |n < m}
for a natural number m (n also ranges over natural numbers). “Classi-
cally” (that is, in ordinary mathematics), every finite set can be assigned
a unique natural number, its cardinality (number of elements). Not so
intuitionistically: take the set {0,a}. If it has a cardinality, then that
must be 1 or 2. In the first case « = 0, in the second case a > 0; so in
either case & = 0 or @ > 0 holds.

e The well ordering principle for the natural numbers states that every
nonempty subset of N has a least element. In fact, using excluded middle
one can show that this is equivalent to the principle of mathematical in-
duction over the natural numbers: if X C N 1s such that 0 € X and for
allz e N, z € X impliesx +1 € X, then X =N.

Intuitionistically, neither principle implies the other. But whereas induc-
tion is a generally accepted principle, also among intuitionists, the well
ordering principle implies the principle of excluded middle: let

X ={0]pu{l}

where ¢ is some statement. Evidently, 1 € X so X is nonempty; but if
the least element of X is 0, then ¢; if it’s 1, then —¢. So in either case,

Ve,

2 Intuitionistic Logic

The codification in a logical system of those laws of thought which were valid
in Brouwer’s eyes, was carried out by his student A. Heyting and the Russian
mathematician Kolmogorov. Given Brouwer’s aversion to logic it is no more
than natural that he thought this was a “sterile exercise”.

Not, that at the time the discovery of the intuitionistically valid inferences
was a trivial matter. For example, it was clear that for a proposition p, -—p was
not equivalent to p (because given this, one can derive the excluded middle);
but what about —=—=p, =——==-p and so on? It seems to have been Heyting who
discovered that this sequence ends, in fact that =——p is equivalent to —p.

Brouwer’s proof of this goes wordly as follows (reflecting his horror of logical
symbolism):



THEOREM. Absurdity of absurdity of absurdity is equivalent to ab-
surdity.

PROOF. When property y follows from property z, then from the
absurdity of y follows the absurdity of x. Therefore necessarily,
since truth implies absurdity of absurdity, absurdity of absurdity of
absurdity implies absurdity.

Conversely, because the correctness of an arbitrary property implies
the absurdity of the absurdity of that property, so must absurdity
of truth, that is absurdity, imply absurdity of absurdity of absurdity.

Poetic, 1sn’t 1t?

One of the obstacles for a development of formal intuitionistic logic was the
lack of a good understanding of how exactly Brouwer read the basic logical con-
nectives. We have already seen that his interpretation of V (or) is different from
the usual one. Heyting formulated an interpretation of the symbols —, A, V, =
and L (a special symbol, standing for “absurdity”), which later became known
as the “Brouwer-Heyting-Kolmogorov interpretation”. In this interpretation,
one defines what it means to give an intuitionistic proof of a propositional for-
mula ¢ (that is, a formula built up from these connectives and propositional
variables) in terms of proofs of its constituents:

e A proof of ¢ A 1) is a pair consisting of a proof of ¢ and a proof of ¥;

e a proof of ¢ V 1) is also a pair, the first component of which is a proof of
@ or a proof of ¥, and the second component is information as to which
is the case;

e a proof of ¢ — 1 is a construction which transforms any proof of ¢ into
a proof of ;

e | has no proof; and a proof of =g is a construction which transforms any
proof of ¢ into a contradiction.

A derivation system, especially suited for intuitionistic logic, is natural deduc-
tion, invented by Gentzen in 1935.

In a natural deduction tree, we have the nodes labelled by formulas. The
formal syntax is:

Form = Var | L | Form @ Form | =Form

where Var is a set of propositional variables p,q,...and ® € {A,V,—}.
Formulas at the top nodes are numbered; they are called assumptions. The
formula at the root is the conclusion of the tree. For example the tree

pl ¢

PAg



has two assumptions, p and ¢; and concludes p A q. Assumptions can be dis-
charged, for example in

p 7
7
p—q

the assumption p has been discharged, which is made visible by its number at
p — q. The tree now has open (i.e. not discharged) assumption ¢, and concludes
p — q. Let’s go one step further:

p q*

q
p—q
q—(p—q)?

concludes ¢ — (p — ¢) from no (open) assumptions at all.
A formula may occur more than once as assumption, and different occur-
rences may be discharged independently of each other:

q' q q" q"

qNq and qNq
g—(qAq) q—(qAq)!

are valid trees. The first derives ¢ — (¢ A ¢) from assumption ¢ (numbered 2);
the second one derives the same formula from no open assumptions. So different
occurrences of the same formula may be numbered differently or alike; but we
insist that different formulas be numbered differently. I now present a formal
definition of natural deduction trees.

In the following list we denote by

{pi*11<i<n}
D
(2

a deduction tree with conclusion 3 and open assumptions ¢; (i = 1,...,n),

where assumption ¢; is numbered k;. The list is read in the following way:

except for the first case, which is an axiom to start, each item is seen as a rule

which permits the construction of the whole tree from its immediate subtrees.

I also write ¢ for the assumption set, if the numbering plays no role in the rule.
We then have the following construction principles for deduction trees:

1<i<n}
¥j
is a valid tree (starting axiom);

ki
L e (1<j<n)
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In this rule, the assumptions ¢ and x are discharged.
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Examples.

1. Let us show that, although intuitionism rejects ¢ V =, ==(p V ngp) is
derivable (i.e. there is a natural deduction tree with no open assumptions,

having it as its conclusion):
1

_ v
~(p Vo) PV
T
—|s01
—(p V)’ PV p
T
—=(pV —p)?
2. ¢ — = is derivable:
! —p?
T
—|—|S02

SD — —|—|s01



3. ==—p — —p (Compare with the part in Brouwer’s verbal proof):
P P’
L
—|—|—|p —|—|p2
L

—|p1

—|—|—|p — —|p3

Exercise 1. Construct natural deduction trees for the following formulas:
a) (A— B)— (B —-A4)
b) (4= B) = (= — =)
¢) (FAVB)—(A—B)

We call two formulas ¢ and ) equivalent if the formulas ¢ — 1 and » — ¢ are
derivable.

Exercise 2. A formula ¢ is called negative if it contains no V and all propo-
sitional variables p occur negated in . So, L and —p are negative, and the
negative formulas are closed under application of A, — and —.

Show that for negative ¢, ¢ and ——¢ are equivalent.

Exercise 3.* Show that for negative ¢, ¢ is derivable if and only if ¢ is classi-
cally true in the sense of truth-tables [for the meaning of this result, see section

4.1].

Exercise 4.* [The Rieger-Nishimura lattice] We consider formulas which only
contain one propositional variable p, up to equivalence. We define, recursively,
the following sequence (Ap)new of formulas in p:

jo i pATP Aspy1 = Aan1 V Az, (n2>1)
LzP Aspya = Aon — Agp1 (n2>1)
Az = —|p

Finally we set A, = p — p.
Show that every formula ¢ in the propositional variable p is equivalent to
some A, or to A, .

*Exercises so marked require some extra effort, or inventiveness

[os)



The implication ordering between the A;’s is as follows:

A2 Al

Ay
A1
Aro / \ Ag
\A7 T "
B T i —
\A3 TN B
\ /

Ao

(This structure is called the “Rieger-Nishimura lattice” or the “free Heyting
algebra on one generator”) Show also that the implications between the A;, the
diagram suggests, are provable.

In fact, no other implications are provable. Quite in contrast to classical
logic, where there are only 4 nonequivalent formulas in p, here there is an
infinity of them.

Exercise 5.*[“Formulas as Types”] The typed A-calculus has the following
types:

e Basic types Ay, ...; a type 0;
e Given types S, T, one has the types S x T, S+T,5S=T.
There are the following terms:

e For every type S there is a denumerably infinite set of variables of type
S: :L‘f,a:;f,...;

e Given terms s of type S and t of type T, (s,t) is a term of type S x T}
given u of type S x T, there is pgu of type S and pju of type T}

o Given s of type .S, there is ig 7(s) of type S+ 7T and js 7(s) of type T+ S;
given u of type S+ T, v of type S = U and w of type T' = U, there is
ex(u,v,w) of type U;

e Given u of type S = T and s of type S, there is (us) of type T; given s
of type S and a variable z of type T, there is Az.s of type T = S.



Now let N be the set of natural deduction trees which do not contain negations,
and which are minimal, in the sense that there are no unused open assumptions.
Let L be the set of terms of the typed A-calculus modulo renaming of bound
and free variables.

There is an obvious bijection between types and negation-free formulas; show
that there is a bijection between L and N, such that a term ¢ of type T is sent
to a deduction of the formula corresponding to 7.

Exercise 6. Find a deduction tree for
A= (BV((A—=0))]—=[A—(BVC)]

and, if you’ve done the previous exercise, the A-term corresponding to it.

3 Kripke models

To show that a formula is not provable, we often use models.

Definition 3.1 A Kripke model is a finite tree K together with a function
[ -] which assigns, to any propositional variable p, a subset [p] of K which is
upwards closed, i.e. x € [p] and x <y imply y € [p] (we take the order in this
way, that the root is the least element).

Given such (K,[-]) we define upwards closed subsets [¢] of K for any
formula ©, by induction:

[L1=0;

e [eAvl=Telnlvl;

e [evyl=Tlelulvl;

s [e—v]={reK|VWy>a(yele]=yelv]}

o [~el={zeK|Vy>zyd[e]}
For k € K we say that k satisfies ¢ (written k |= ¢) if & € [¢]. We say that
(K, [-]) satisfies ¢, or ¢ is true in the model (K,[-]), if the root of K satisfies
©. Let us note an evident fact: whether or not z |= ¢ depends only on the set
{y € K|y > z} and the sets [p] for those p which actually occur in ¢.

The intuition behind Kripke models is as follows. We see a node of the tree
as a “possible world”; the nodes branching out of that node, as possible future
states. In the future, information can be gained, but cannot go lost; therefore,

the sets [ ] are upwards closed.
We draw Kripke models like this, writing p at a node if that node isin [p]:

p p q

" N\,

10



In the first model, p V —p is not true; in the second model, (p — q) V (¢ — p)
fails.

Exercise 7. Prove this.

Exercise 8. Show that in:

N

[ ]
—pV —=p is not true.

Exercise 9. Construct models in which the following formulas are not true:
a) ((p—q) —p)— p (Pierce’s Law)

by (p—=(gvr)—=(p—=aVp—r)
We have the following important
SOUNDNESS THEOREM If ¢ is derivable, then ¢ is true in all Kripke models.

Exercise 10.* Prove this theorem [Hint: you have to devise the right induction
hypothesis in order to carry induction over the height of deduction trees].

Conversely, there is the less trivial

COMPLETENESS THEOREM. If ¢ is true in all Kripke models, ¢ is derivable.
Bearing in mind that Kripke models are finite, we get:

COROLLARY. It is decidable whether ¢ is derivable or not.

Exercise 11. Give an intuitive proof of this corollary.

For the lovers of complexity results: R. Statman proved in 1979 that the
above decision problem is PSPACE-complete.

The following exercises aim to give you an idea of different aspects of model
theory: the first one shows preservation of a large class of formulas under a
natural construction on trees (joining them together); the second one gives a
proof theoretic result (disjunction property) by using models; the third intro-
duces an important class of maps between models, which preserve the logic; and
the fourth is of the kind which characterizes a type of models by the formulas
which are true in them.

Exercise 12. The class RH of Rasiowa-Harrop formulas is defined as follows:
LeERH, peERH, p — C e RHif C € RH, for any ¢; and —¢ € RH for every

®.
Given a finite collection of Kripke models (K;, [ ]:)ier, we define a Kripke

model (Zie] K;,[-1), where Zie] K; is the union of all trees K; with a new

11



root ko; [ -] is just [-]; when restricted to K;, and we put kg € [p] if and only
if for all i € I, pis true in (K5, [-]:)

Show the following: if C'is a Rasiowa-Harrop formula, and for all 7, C' is true
in (Ky, [-]:), then C'is true in (3_;c; K, [-]). Show also by a counterexample,
that the condition that C'is a Rasiowa-Harrop formula, can not be dropped.

Exercise 13. Show, using the preceding exercise and the completeness theorem,
the strong disjunction property for intuitionistic propositional logic: if C' — Vi)
is derivable, with C' Rasiowa-Harrop, then either C' — ¢ or C' —  is derivable.
Conclude from this the ordinary disjunction property: if ¢V 1) is derivable, then
@ or 1 1s derivable.

Exercise 14. Let K and L be finite trees. A monotone function f: L — K is
called an open map (or p-morphism) if for all € L and b > f(z) in K, there
isy >z in L with f(y) =b.

Now suppose that (K,[-]) is a Kripke model, L a tree and f: L — K an
open map. We can define a Kripke model (Z,[-];) by putting

[pls=r"(Ip])

Show that for these two Kripke models, for all z € L and all formulas ¢:

rEe o flr)Ee

Exercise 15. Show that the tree K is linear if and only if for all Kripke models
(K,[-]) and for all formulas ¢, %, the formula

(p =)V (¢ —¢)

is true in (K, [-]).

4 Further Perspectives

4.1 Constructive versus Nonconstructive Proofs

Is intuitionistic mathematics weaker than classical mathematics?

On the one hand: obviously. One has deleted an important logical princi-
ple. On the other hand, it is possible to embed classical logic into the so-called
‘negative fragment’ of intuitionistic logic; this is the meaning of exercise 3. So if
you read all the connectives negatively (i.e. you interpret ¢ V ¢ as =(—p A )
throughout), everything which is provable classically is also provable intuition-
istically.

Moreover, since the logic is weaker, there are more models and less equiv-
alences. Usually, a classical notion ‘splits’ intuitionistically, in the sense that
there are several notions, classically equivalent to the given one, but intuition-
istically no one is equivalent to another. Proving anything about such a notion

12



intuitionistically, usually gives you a stronger result than proving it classically.
Let’s see a simple example.

You know of course, that the cardinality of the powerset of a set A is strictly
larger than that of A itself. Let’s prove it:

THEOREM. There is no injective function P(A) — A, for any set A.

CLASSICAL PROOF. We identify P(A) with 24, the set of characteristic functions.
Suppose ® : 24 — A is injective. Let f: A — 2 be defined as follows:

0 if there is g € 24 with ®(g) = a and g(a) = 1;

ra={ ] 5

Let ®(f) = N and consider f(N). If f(N) = 0 then for some g, ®(g9) = N
and g(N) = 1, so by injectivity of ®, ¢ = f and f(N) = 1 contradiction; so
F(N) =1 whence by the very definition of f, f(N) = 0. Again contradiction.

Intuitionistically, there are two things wrong with this proof. First, the
identification of P(A) with 24 and even assuming that that’s OK, it is not
clear that the function f defined in the proof, is a total function. But the
general idea is perfectly all right, so:

INTUITIONISTIC PROOF. Again, suppose ® : P(A) — A injective. We define the
following subset of A:

a={acA|VBC A(a € B =a# D)}

Let N = ®(«). Instantiating a for 8 in the definition of a, one sees that N
cannot be an element of «, but we’re going to prove it anyway: if § satisfies
N € g and N = ®(3), then by injectivity of &, # = @ so N € a, but that can’t
be! So, N € a.

What does this teach us? Well, intuitionistically we cannot repeat the trick
with 24 instead of P(A). Does that then mean that intuitionistically, we can
have an injective function from 24 into A? Yes, it does!

And this has important consequences for the semantics of programming lan-
guages; for example one can, in an intuitionistic universe, obtain models for an
untyped language in which one has all functions from terms to Booleans, as
terms.

4.2 Intuitionism and modern mathematics

The interest in intuitionism experienced a revival in the seventies, when it was
discovered, by Lawvere and others, that structures which stood in the limelight
of mathematical research, namely categories of sheaves (introduced to algebraic
geometry by Grothendieck and Verdier) were, at the same time, models of in-
tuitionistic logic.

13



This has two aspects: reasoning intuitionistically one could sometimes obtain
results about these structures which would require a lot of calculations other-
wise; on the other hand it provided intuitionism with a wealth of structures in
which to test (in)equivalences, derivability questions, independence questions
and so on.

The resulting field of “topos theory” unites intuitionism with category the-
ory, and enjoys increasing interest from computer scientists. A good introduc-
tory text is the book by MacLane and Moerdijk in the references.

4.3 Intuitionism and computer science

Many programming languages are based on some form of type theory (like the
typed A-calculus). The intuition is that the types are sets, and the terms of an
arrow type S = T are functions between sets S and 7. In many cases, this
intuition can be given a precise meaning in models of intuitionistic set theory.

For example, if there is a type N of natural numbers, it is usually the case
that the terms of type N = N denote recursive functions. Yet we know that
not all functions from N to N are recursive. .. Do we? In intuitionistic set the-
ory, one often encounters the statement which is called “Church’s Thesis”, and
which says that all functions from N to N are recursive. There are models of
intuitionistic set theory, in which this statement is true. So the basic intuition
can be vindicated.

Another example is “Brouwer’s Theorem”: all functions from R to R are
continuous. The idea is, that in order to construct anything discontinuous, one
has to make use of case distinctions like those we saw in section 1, and which
are not valid intuitionistically. But we can say something more precise here.
Suppose we have Church’s thesis true. Set theoretically, the reals don’t differ
much from NN. Now if the functions from NN to NV are also given recursively,
then the Kreisel-Lacombe-Shoenfield theorem of recursion theory tells us that
they must be continuous. Thus, also Brouwer’s Theorem can be validated in
models of intuitionistic set theory.
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