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PrefaceThe 1998-1999 Master Class Program in Mathematical LogicThese Lecture Notes contain the material of a series of lectures I gave in theSpring of 1999, in the Master Class Program in Mathematical Logic. Thisprogram was funded by the Mathematical Research Institute, a cooperation ofthe Mathematics Departments of the Universities of Utrecht, Nijmegen, andGroningen.In the fall of 1998, students followed basic courses in core subjects of Logic:Model Theory, Recursion Theory, Proof Theory and Lambda Calculus. More-over there was a series of introductory talks on varying topics in Logic, includ-ing Intuitionism, Term Rewriting, Naive Set Theory, the Language of Cate-gories, the P=NP?-problem, and Provability Logic; the series was called LogicPanorama.The second semester featured more advanced courses: Type Theory, PeanoArithmetic, and the Logic of Sheaves. The students also followed a seminar onDescriptive Set Theory.Apart from doing exams for the lecture courses, the students had to writetwo essays: one, elementary, on a subject of their choice from the Panoramaseries; the other, the so-called \test problem", required them to demonstrate anability to read research texts independently, furnish missing details, and solvea (simple) problem.I believe that in all, this program provided a balanced and thorough intro-duction to the subject, and gave would-be research students and excellent basison which to start a research career.Responsability for the Program was taken by the Logic Groups of the Uni-versities of Utrecht and Nijmegen. Teachers were Henk Barendregt, Wil Dekker,Herman Geuvers, Ieke Moerdijk, Jaap van Oosten, Harold Schellinx and WimVeldman. The following teachers (apart from those already mentioned) tookpart in the Panorama Program and/or supervised the writing of essays: Ti-bor Beke, Hans Bodlaender, Fran�cois M�etayer, Erik Palmgren, Anne Troelstra,Albert Visser and Hans Zantema.The course on Peano Arithmetic (PA)Naturally divided into two parts, the course treats G�odel's Incompleteness The-orems and gives an introduction to the Model Theory of PA. In spite of the clearseparation between working in an axiomatic theory and considering models ofthe theory, there are themes running through the entire course, giving unity tothe treatment. These are: the formalization of elementary number theory inPA, the arithmetization of syntax, the natural strati�cation of sentences in thearithmetical hierarchy, and the issue of de�nability, coming up over and overagain.These themes are in fact central to Logic as a scienti�c discipline: the studentwill meet them everywhere, in di�erent guises. I am therefore convinced thati



the study of Peano Arithmetic provides the student with basic skills he will beusing continuously, in every area of Logic.Many people are of opinion that syntax is boring and coding troublesome,and that these matters should therefore be glossed over in a hand-waving man-ner. It is quite ironic that this belief is shared by many logicians, whereas syntaxis the raw material of Logic itself! Very often the result of a hand-waving treat-ment is, that students feel insecure about syntactical matters, and have no clearunderstanding of the problems involved in formalization. Of course, the prob-lem of treating syntax needs reection of a special kind. If presented in a wellthought-out way, the theory of coding and syntax can be elegant and reward-ing in itself (besides being indispensible). I hope that in these notes I havesucceeded in bringing this to light.Mathematically, Peano Arithmetic is attractive because of the many appli-cations of Model Theory and Recursion Theory it o�ers; permitting to see thesesubjects `at work'.Now let me briey outline the contents of the course. The �rst chapter givesthe de�nition of PA as an axiomatic theory, and treats the formalization ofelementary number theory in it, up to the representability theorems for recur-sive and primitive recursive functions. The second chapter gives an account ofG�odel's Incompleteness Theorems. The third and fourth chapters are concernedwith the model theory of PA. Chapter 3 focusses on structural aspects of exten-sions of models. After a discussion of the ordered structure of (nonstandard)models and the Overspill Principle, the two basic kinds of extension (co�naland end-extension) are treated: existence of proper elementary extensions ofeach kind, and Gaifman's Splitting Theorem. Chapter four is called `Recur-sive Aspects of models of PA' (I couldn't think of a better name) and dealswith theorems connected to the existence of the partial truth (or `satisfaction')predicates for �n-formulas, and the theory of coded sets. We have the classicaltheorems of Ryll-Nardzewski (PA is not �nitely axiomatized) and Tennenbaum(no countable nonstandard model of PA is recursive); and then the beautifulresults of Scott and Friedman.There is lots of scope for follow-up courses in many directions. Amongthe topics I speci�cally regret not having been able to say anything, are weaksubtheories of PA (there is an interesting model theory, and rami�cations tocomplexity theory), and the algebraic structure of nonstandard models (an easyfact, recorded in the Appendix, indicates that these have interesting properties).Prerequisites: these notes have been written for students who have beenthrough basic mathematical education (the �rst two years of the university cur-riculum in mathematics) as well as the basics of model theory and recursiontheory. Speci�cally, what is required from model theory is: elementary embed-dings, the method of diagrams, the Omitting Types theorem. From recursiontheory: the recursion theorem, r.e. sets, the arithmetic hierarchy, relative com-putability.Literature An outstanding reference for models is Kaye's Models of PeanoArithmetic which also has most of the material in chapter 1, and which I haveii



plagiarized happily. Another very helpful source was Smorynski's Lecture Noteson Nonstandard Models of Arithmetic, in Logic Colloquium '82.For a good overview of the (modal) logical structure of ther IncompletenessTheorems, see Smorynski's Self-Reference and Modal Logic, and for variousnumber-theoretical aspects, his Logical Number Theory I .There are many good and accessible treatments of G�odel's First Incomplete-ness Theorem, but, rather embarrassingly for such a central result, not so manyfor the Second. For example, Smullyan'sG�odel's Incompleteness Theorems doesnot give a proof of the Second Incompleteness Theorem! There is a good expo-sition in Girard's Proof Theory and Logical Complexity.
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1 The Formal System of Peano ArithmeticThe system of �rst-order Peano Arithmetic or PA, is a theory in the languageLPA = f0; 1;+; �g where 0; 1 are constants, and +; � binary function symbols. Ithas the following axioms:1) 8x:(x+ 1 = 0)2) 8xy(x + 1 = y + 1! x = y)3) 8x(x+ 0 = x)4) 8xy(x + (y + 1) = (x+ y) + 1)5) 8x(x�0 = 0)6) 8xy(x�(y + 1) = (x�y) + x)7) 8~x[('(0; ~x) ^ 8y('(y; ~x)! '(y + 1; ~x)))! 8y'(y; ~x)]Item 7 is meant to be an axiom for every formula '(y; ~x). These axioms arecalled induction axioms. Such a set of axioms, given by one or more genericsymbols \'" which range over all formulas, is called an axiom scheme; in ourcase we talk about the induction scheme.So, PA is given by in�nitely many axioms and we shall see that this in�nitudeis essential.Clearly, the set IN together with the elements 0,1 and usual addition andmultiplication, is a model of PA, which we call the standard model and denoteby N . It is easy to see that PA has also non-standard models. First de�ne, forevery n 2 IN, a term n of LPA by recursion: 0 = 0 and n+ 1 = n + 1 (mindyou, this is not the identity function! E.g., 3 = ((0 + 1) + 1) + 1). Terms of theform n are called numerals and we shall use them a lot later on. Now let c bea new constant, and consider in the language LPA [ fcg the set of axioms:faxioms of PAg [ f:(c = n) jn 2 INgSince every �nite subset has a straighforward interpretation in IN, this is aconsistent set of axioms and has therefore a modelM, which has a nonstandardelement cM.The theory PA is surprisingly strong: it can represent (in a suitable sense,soon to be made precise) all recursive functions, and most elementary numbertheory can be carried out in this system. Ironically though, it is exactly thisstrength that lies at the basis of its being incomplete as G�odel was the �rstto show. Since we wish to arrive at these famous Incompleteness Theorems,our �rst aim is to develop some elementary number theory in PA. Our �rstproposition establishes basic properties of addition and multiplication.Proposition 1.1i) PA ` 8x(x = 0 _ 9y(x = y + 1)) 1



ii) PA ` 8xyz(x + (y + z) = (x+ y) + z)iii) PA ` 8xy(x + y = y + x)iv) PA ` 8xyz(x + z = y + z ! x = y)v) PA ` 8xyz(x�(y�z) = (x�y)�z)vi) PA ` 8xy(x�y = y�x)vii) PA ` 8xyz(x�(y + z) = (x�y) + (x�z))viii) PA ` 8xyz(:(z = 0) ^ x�z = y�z ! x = y)Proof. All of these are proved using the induction axioms. For i), let '(x) bex = 0 _ 9y(x = y + 1). Clearly, PA ` '(0) ^ 8y'(y + 1), so PA ` 8x'(x).For ii), use \induction on z" that is, let '(z) be the formula 8xy(x+(y+z) =(x+ y) + z). Then PA ` '(0) by axiom 3, and PA ` '(z)! '(z + 1) by axiom4, since'(z) ` (x+ (y + z)) + 1 = x+ ((y + z) + 1) = x+ (y + (z + 1))The proof of the other statements is a useful exercise (sometimes, as in iii), youwill need to perform a double induction).Exercise 1. Prove statements iii)-viii) of proposition 1.1.Proposition 1.2 Let '(x; y) be the formula 9z(x+(z+1) = y). Then in PA, 'de�nes a discrete linear order with least element which satis�es the least numberprinciple, i.e.i) PA ` :'(x; x)ii) PA ` '(x; y) ^ '(y; z)! '(x; z)iii) PA ` '(x; y) _ x = y _ '(y; x)iv) PA ` x = 0 _ '(0; x)v) PA ` '(x; y)! (y = x+ 1 _ '(x+ 1; y))vi) PA ` 9w (w)! 9y( (y) ^ 8x('(x; y)! : (x)))vii) PA ` '(x; x+ 1)Exercise 2. Prove proposition 1.2The scheme vi) of proposition 1.2 is called the least number principle LNP.Exercise 3. Prove that LNP is equivalent to the scheme of induction, in thefollowing sense: let PA0 be the theory with the �rst 6 axioms of PA, and thestatements of proposition 1.2 as axioms. Then PA and PA0 are equivalent the-ories. 2



The order de�ned in proposition 1.2 is so important that we introduce anew symbol for it: henceforth we write x < y for 9z(x+ (z + 1) = y). We shallalso use the abbreviations 9x < y and 8x < y for 9x(x < y ^ : : : ) and 8x(x <y ! : : : ), respectively. We shall write x � y for x = y _ x < y, and x 6= y for:(x = 0). This process of introducing abbreviations will continue throughout;it is absolutely essential if we want to write meaningful formal statements (but,especially later when we shall also introduce function symbols, we shall have tomake sure that the properties of the meant functions are provable in PA).Exercise 4. Prove the principle of well-founded induction, that is:PA ` 8w(8v < w (v) !  (w))! 8w (w)Exercise 5. Prove: PA ` 8xy(y 6= 0! x � x�y)1.1 Elementary Number Theory in PAThe starting point for our treatment of elementary number theory in PA is thetheorem of Euclidean division.Theorem 1.3 (Division with remainder)PA ` 8xy(y 6= 0! 9ab(x = a�y + b ^ 0 � b < y))Moreover, PA proves that such a; b are unique.Proof. By induction on x. Clearly, 0 = 0�y + 0; if x = a�y + b^ 0 � b < y thenby 1.2v), b+1 < y_b+1 = y. If b+1 < y, x+1 = a�y+(b+1) and if b+1 = y,x+ 1 = (a+ 1)�y + 0.For uniqueness, suppose x = a�y + b = a0�y + b0 with 0 � b; b0 < y. If a < a0then a+ 1 � a0 hence a0�y � a�y + y > a�y + b = xwith a contradiction. So a0 � a and by symmetry, a = a0. Then b = b0 followsby 1.1iv).In the notation of theorem 1.3, we call b the remainder of x on division by y,and a the integer part of x divided by y.Again, we introduce shorthand notation:xjy � 9z(x�z = y)irred(x) � 8v � x(vjx! v = 1 _ v = x)prime(x) � x > 1 ^ 8yz(xj(y�z ! xjy _ xjz)Furthermore, since PA ` 8xy9!z((z = 0^x < y)_x = z+y), we may introducea function symbol � to the language, with axiom8xy((x < y ^ x� y = 0) _ (x = y + (x� y)))3



I hope the notations are familiar. The notions \irreducible" and \prime" elementare from ring theory.Proposition 1.4 PA ` 8x(x > 1! (irred(x)$ prime(x)))Proof. If prime(x) and vjx so v�z = x then either xjv whence v = x, or xjzwhence v = 1. So irred(x). Conversely suppose irred(x) and x > 1. Let P (v)be the formula 8yz � v(y�z � v ^ xj(y�z)! xjy _ xjz)We show 8w(8v < wP (v) ! P (w)), so by well-founded induction we mayconclude 8wP (w) which clearly implies prime(x).So suppose 8v < wP (v) and y; z � w such that y�z � w, xj(y�z), x - y, x - z.Then y; z > 1 and using 1.3 we may assume y < x since otherwise replace y byits remainder on division by x. Again using 1.3, let x = a�y + b with 0 � b < y.If b = 0 then by irreducibility of x, y = 1_ y = x, a contradiction in both cases.If b > 0 we have b�z = (x� a�y)�z = x�z � a�y�zso xj(b�z), x - b, x - z and b�z < y�z � w; contradiction with 8v < wP (v).Therefore P (w), and we are done.Proposition 1.5 PA ` 8x(x > 1! 9v(prime(v) ^ vjx))Proof. If x > 1, since xjx we have 9w(w > 1 ^wjx). By LNP, there is a leastsuch w. The least such w is irreducible, hence prime by proposition 1.4.Exercise 6. Prove that \PA proves the existence of in�nitely many primes",i.e. the statement 8x9y(x < y ^ prime(y))[Hint: �rst prove, by induction in PA, 8x9y > 08i(1 � i � x ! ijy). Givensuch y, consider y + 1 and apply proposition 1.5]We de�ne two predicates, \x is a power of the prime v" and \x is a prime power"respectively:pow(x; v) � x � 1 ^ prime(v) ^ 8w � x(w > 1 ^wjx! vjw)pp(x) � 9v � x pow(x; v)Exercise 7.a) PA ` 8xv(pow(x; v)! pow(x�v; v))b) PA ` 8xyv(pow(x; v) ^ pow(y; v) ! xjy _ yjx)c) PA ` 8xyv(pow(x; v) ^ pow(y; v) ^ x < y ! (x�v)jy)4



For prime(v), we want to de�ne for each number y > 0 its v-part, that is thehighest power of v that divides y. We denote this by y � v, and we assume asaxiom: pow(y � v; v) ^ (y � v)jy ^ (y � v)�v - yOf course, to be able to do this we have to prove thatPA ` 8yv9!z((z = 0 ^ (y = 0 _ :prime(v))) _ pow(z; v) ^ zjy ^ z�v - y)If pow(y; v) take z = y. Otherwise, 9w � y(wjy ^ v - w) hence 9z � y9w �y(y = w�z ^ v - w), so by LNP there is a least such z. Then pow(z; v) and zjy.If z�vjy so y = w0�z�v = w�z, then w0�v = w, contradiction with v - w. So zexists; its uniqueness follows from the Exercise above.The following lemma states that xjy i� every prime power which divides xalso divides y.Lemma 1.6 PA ` 8xy(xjy $ 8v � x(pp(v) ^ vjx! vjy))Proof. The direction from left to right is trivial, as is the case y = 0_x = 1 inthe other direction. For a contradiction, let x > 1 be least such that9y � 1(8v � x(pp(v) ^ vjx! vjy) ^ x - y)and take the least such y. Its remainder on division by x satis�es the sameproperty, so we may assume y < x. Let x = a�y + b with 0 � b < y. If 0 < b wehave a contradiction with the minimality of y. So b = 0 and x = a�y. Supposea > 1. Then a has a prime divisor v by 1.5. Since pp(v) and vjx, vjy. But nowwe have pp((y � v)�v) ^ (y � v)�vjx ^ (y � v)�v - ywhich is a contradiction.We can now de�ne the least common multiple and greatest common divisor oftwo numbers, and prove their basic properties in PA.Let x; y � 1. Since xjx�y and yjx�y there is a unique least w > 0 with xjw^yjw;we denote this w by lcm(x; y). Clearly, lcm(x; y) � x�y.Writing x�y = a�lcm(x; y)+b, 0 � b < lcm(x; y) we see that xjb^yjb so if b > 0we get a contradiction with the minimality of lcm(x; y). So x�y = a�lcm(x; y)for a unique a, which we denote by gcd(x; y). Writing lcm(x; y) = y�z, we havex�y = gcd(x; y)�y�z so x = gcd(x; y)�z and gcd(x; y)jx; similarly, gcd(x; y)jy.Exercise 8. De�ne yourself the function symbols max(x; y) and min(x; y) andprove their basic properties in PA. Prove furthermore:a) PA ` prime(v) ! lcm(x; y) � v = max(x � v; y � v)b) PA ` prime(v) ! gcd(x; y) � v = min(x � v; y � v)5



Proposition 1.7a) PA ` 8xyu(x; y � 1 ^ xju^ yju! lcm(x; y)ju)b) PA ` 8xyu(x; y � 1 ^ ujx^ ujy ! ujgcd(x; y))Proof. For a), consider the remainder of u on division by lcm(x; y); if it isnon-zero, it is < lcm(x; y) and still a common multiple of x and y.For b), use proposition 1.6. Let pow(z; v) ^ zju. Then zj(x � v) ^ zj(y � v)so zj(gcd(x; y) � v) (by the Exercise), so zjgcd(x; y). By 1.6, ujgcd(x; y).Exercise 9. Prove:a) PA ` 8xy � 18x0y0(x = x0�gcd(x; y) ^ y = y0�gcd(x; y)! gcd(x0; y0) = 1)b) PA ` 8xyab(y = a�x+ b ^ 0 � b < x! gcd(x; y) = gcd(x; b))Theorem 1.8 (B�ezout's Theorem for PA)PA ` 8xy � 19a � y; b � x(a�x = b�y + gcd(x; y)))Proof. By induction on x. For x = 1 take a = 1; b = 0.For x > 1 let y = c�x+ d, 0 � d < x. Dividing this equation by gcd(x; y) wehave y0 = c�x0+d0 with d0 < x0 � x and gcd(x0; d0) = 1; by induction hypothesiswe have u�d0 = v�x0 + 1for suitable u; v; so v�x0 = u�d0 � 1. Squaring both sides givesa0�x0 = b0�d0 + 1for some a0; b0; multiplying by gcd(x; y) gives(a0 + b0�c)�x = b0�y + gcd(x; y)Finally, let (a0 + b0�c) = c0�y + a00, 0 � a00 < y. Thena00�x = (b0 � c0�x)�y + gcd(x; y)with a00 < y and since (b0 � c0�x)�y � a00�x < x�y, we have (b0 � c0�x) < x.Theorem 1.8 plays a central role in the development of a rudimentary coding ofsequences in PA, which was in fact G�odel's �rst crucial idea for the proof of hisIncompleteness Theorems.For a good understanding of what follows, it is useful �rst to see the algebraictrick underlying it. Suppose we are given a sequence of numbers x0; : : : ; xn�1.Let m = max(x0; : : : ; xn�1; n)!. Then for all i; j with 0 � i < j < n we havethat the numbers m(i + 1) + 1 and m(j + 1) + 1 are relatively prime, for if pis a prime number which divides both of them, it divides their di�erence whichis m(j � i). Since p is prime, it follows that pjm, but also pj(i + 1)m + 1, a6



contradiction. Since xi < (i+1)m+1 for all i, we have by the Chinese remaindertheorem a number a such thata � xi modm(i + 1) + 1for all i. The number a, or rather the pair (a;m), codes the sequence x0; : : : ; xn�1in a sense.The following theorem establishes three essential properties of this codingin PA: for every x, there is a sequence starting with x; every sequence can beextended; and a technical condition necessary later on.We use the following abbreviations: rm(x; y) denotes the remainder of x ondivision by y, and (a;m)i denotes rm(a;m�(i+ 1) + 1).Theorem 1.9i) PA ` 8x9a;m((a;m)0 = x)ii) PA ` 8yxam9bn(8i < y((a;m)i = (b; n)i) ^ (b; n)y = x)iii) PA ` 8ami((a;m)i � a)Proof. For i), take m = x and a = 2x+ 1; thenrm(a;m�(0 + 1) + 1) = rm(2x+ 1; x+ 1) = xiii) is trivial, so we are left to prove ii). Let us observe:PA ` 8yxam9u(8i < y((a;m)i < u) ^ x < u ^ y < u) (1)PA ` 8u9v � 18i � u (i � 1! ijv) (2)PA ` 8uv(8i � u(i � 1! ijv)!8ij(0 � i < j � u! gcd((i + 1)�v + 1; (j + 1)�v + 1) = 1)) (3)((1) is proved by induction on y, (2) by induction on u, and (3) by formalizingthe informal argument given above, using the properties about gcd that weknow)So, given y; x; a;m, take successively u satisfying (1) and v satisfying (2) foru; put n = v. We have: 8i < y((a;m)i < (i + 1)�n + 1)x < (y + 1)�n+ 18ij(0 � i < j � y ! gcd((i + 1)�n+ 1; (j + 1)�n+ 1) = 1)and we want to �nd b such that(8i < y((a;m)i = (b; n)i)) ^ x = (b; n)yTo do this we employ induction. Suppose for k < y there is b0 satisfying(8i < k((a;m)i = (b0; n)i)) ^ x = (b0; n)y7



We want to �nd b satisfying(8i � k((a;m)i = (b; n)i)) ^ x = (b; n)yNow it is easy to show that for all k < y,9w((y + 1)�n+ 1jw ^ 8i < k((i+ 1)�n+ 1jw)^ gcd(w; (k+ 1)�n+ 1) = 1)(use induction on k and the properties of n). Take such w. Then by 1.8, thereis u � (k + 1)�n + 1 such thatrm(u�w; (k + 1)�n+ 1) = 1Put b = b0 + u�w�(b0�n�(k + 1) + (a;m)k). Then (b; n)y = (b0; n)y = x since(y + 1)�n + 1jw, and i < k ! (b; n)i = (b0; n)i = (a;m)i since (i + 1)�n + 1jw.Finally, (b; n)k = rm(b; (k+ 1)�n+ 1)= rm(b0 + b0�n�(k + 1) + (a;m)k; (k + 1)�n+ 1)= rm(b0�((k + 1)�n+ 1) + (a;m)k; (k + 1)�n+ 1)= (a;m)kwhich completes the induction step and the proof.We shall shortly see (in Theorem 1.13 below) how to use theorem 1.9 to de�neevery primitive recursive function in PA, after the necessary de�nitions to makeprecise what this means. But to give the idea already now, let's \de�ne" theexponential function x; y 7! xy. Let �(x; y; z) be the formula9am((a;m)0 = 1 ^ 8i < y((a;m)i+1 = x�(a;m)i) ^ (a;m)y = z)Exercise 10. Prove that PA ` 8xy9!z�(x; y; z). Introduce a function symbolexp to LPA, with axiom 8xy�(x; y; exp(x; y)). Prove:PA ` 8xyy0(exp(x; y + y0) = exp(x; y)�exp(x; y0))PA ` 8xyy0(exp(x; y�y0) = exp(exp(x; y); y0))PA ` 8xv(pow(x; v)! 9y < x(x = exp(v; y)))And try your hand at:Exercise 11. Formulate and prove in PA the theorem of unique prime factor-ization.1.2 Representing Recursive Functions in PADe�nition 1.10 An LPA-formula ' is called a �0-formula if all quanti�ers arebounded in ', that is of the form 8x < t or 9x < t, for a term t not containingthe variable x. A formula ' is a �1-formula if it is of the form 9y1 : : : yt with a �0-formula. We also write ' 2 �0, ' 2 �1.8



Exercise 12. Prove the Collection Principle in PA:PA ` 8i < t9v ! 9v8i < t9u < v and deduce that if ' is equivalent to a �1-formula, so is 8i < t'.We now discuss the so-called \�1-completeness" of PA: the statement that PAproves all �1-sentences which are true in the standard model N . Recall thede�nition of the numerals n from page 1.Exercise 13. Prove:PA ` n+m = k , n+m = k for all n;m; k 2 INPA ` n�m = k , n�m = k for all n;m; k 2 INPA ` n < m, n < m for all n;m 2 INPA ` 8x(x < n$ x = 0 _ : : :_ x = n� 1) for all n > 0From this exercise we can see by induction on the LPA-term t(x1; : : : ; xk) withvariables x1; : : : ; xk: if tN is its interpretation in the model N , as functionINk ! IN, then for all n1; : : : ; nk 2 IN:PA ` t(n1; : : : ; nk) = tN (n1; : : : ; nk)Exercise 14. (�1-completeness of PA) Prove that for every �0-formula ' withfree variables x1; : : : ; xk and all n1; : : : ; nk 2 IN:PA ` '(n1; : : : ; nk),N j= '[n1; : : : ; nk]and deduce that the same equivalence holds for �1-formulas. Conclude that a�1-sentence is provable in PA if and only if it is true in N .Warning. The equivalence does not hold for negations of �1-formulas, as weshall soon see!De�nition 1.11 Let A � INk a k-ary relation. An LPA-formula '(x1; : : : ; xk)of k free variables is said to represent A (numeralwise) if for all n1; : : : ; nk 2 INwe have: (n1; : : : ; nk) 2 A ) PA ` '(n1; : : : ; nk) and(n1; : : : ; nk) 62 A ) PA ` :'(n1; : : : ; nk)Let F : INk ! IN a k-ary function. An LPA-formula '(x1; : : : ; xk; z) of k + 1free variables represents F numeralwise if for all n1; : : : ; nk 2 IN:PA ` '(n1; : : : ; nk; F (n1; : : : ; nk)) andPA ` 9!z'(n1; : : : ; nk; z)Exercise 15. If F : INk ! IN is numeralwise represented then so is its graph,considered as k + 1-ary relation.We say that a relation or function is �1-represented if there is a �1-formularepresenting it. Later, we shall see that if a function is represented at all, itmust be �1-represented, and recursive (and vice versa).9



De�nition 1.12 A function F : INk ! IN is called provably recursive in PA ifit is represented by a �1-formula '(x1; : : : ; xk; z) for whichPA ` 8x1 : : :xk9!z'(x1; : : : ; xk; z)Theorem 1.13 Every primitive recursive function is provably recursive in PA.Proof. We prove this by induction on the generation of the primitive recur-sive function. The basic functions �x1 � � �xk:xi, �x:x + 1 and �x:0 are clearlyprovably recursive.If F (~x) is de�ned by composition from G;H1; : : : ;Hm, soF (~x) = G(H1(~x); : : : ;Hm(~x))suppose by induction hypothesis that G;H1; : : : ;Hm are represented by the�1-formulas  ; �1; : : : ; �m respectively. Then F is represented by the formula'(~x; z) � 9z1 � � �zm(�1(~x; z1) ^ � � � ^ �m(~x; zm) ^  (z1; : : : ; zm; z))which is equivalent to a �1-formula; that PA ` 8~x9!z'(~x; z) follows from thecorresponding property for  ; �1; : : : ; �m.The crucial induction step is primitive recursion; it is here that we use theo-rem 1.9. Suppose that F (~x; y) is de�ned by primitive recursion from G and H,so F (~x; 0) = G(~x) and F (~x; y + 1) = H(~x; F (~x; y); y)By induction hypothesis, G andH are �1-represented by  (~x; z) and �(~x; u; v; w)respectively. Then F is represented by the formula '(~x; y; u) de�ned as9am( (~x; (a;m)0) ^ 8i < y �(~x; (a;m)i; i; (a;m)i+1) ^ (a;m)y = u)To be sure, this should really be seen as an abbreviation, since there is no term(a;m)i in LPA, so e.g.  (~x; (a;m)0) is shorthand for9c; d < a(a = c�(m + 1) + d ^ 0 � d < m+ 1 ^  (~x; d))but still one sees that the formula ' is equivalent to a �1-formula. The proofthat PA ` 8~x; y9!u'(~x; y; u) is done by induction (in PA!) on u, where one usesthe properties listed in theorem 1.9. The details of this proof, as well as theproof that ' represents F , are left to the reader.Exercise 16. Carry out the �lling in of missing details in the proof of theo-rem 1.13.The study of the class of all functions which are provably recursive in PA,is important for the proof theory of PA. It is an old result that the provablyrecursive functions in PA are the "0-recursive functions. This refers to an ordinalhierarchy of total recursive functions, and "0 is the least ordinal� such that thereexists a recursive binary relation � on IN with the properties:10



� (IN;�) is a well-order of order-type �;� PA does not prove the scheme8x(8y � x (y) !  (x))! 8x (x)(where, of course, we use a �1-formula representing � in PA)There are several equivalent de�nitions of "0; another one is: the least ordinalwhich is closed under the operation � 7! !�.We do not enter this study in this course, but just point out that there arelots of provably total functions which are not primitive recursive. To give thesimplest possible case:Exercise 17. Prove that the Ackermann function:A(0; x) = x+ 1A(n + 1; 0) = A(n; 1)A(n+ 1; x+ 1) = A(n;A(n+ 1; x))is provably recursive in PA.Theorem 1.14 Every total recursive function is �1-represented in PA.Proof. By basic recursion theory, there is a primitive recursive predicate T , aprimitive recursive function U such that for every k-ary recursive function F wehave a number e such that:F (n1; : : : ; nk) = m, 9y(T (e; n1; : : : ; nk; y) ^ U (y) = m)The set f(n1; : : : ; nk; y;m) jT (e; n1; : : : ; nk; y) ^ U (y) = mg is primitive recur-sive and so, by 1.13, represented by a �1-formula '(x1; : : : ; xk; y; w), which wecan write as 9z1 : : : zlP (x1; : : : ; xk; y; w; z1; : : : ; zl)for a �0-formula P .If R(z; ~x; w) is the �0-formula 9y < z9z1 < z � � �9zl < zP , then clearlyPA ` 9yw'(~x; y; w)$ 9zwR(z; ~x; w)Finally, let S(z; ~x; w) be the �0-formulaw < z ^R(z; ~x; w)^ 8u < z:9v < uR(u; ~x; v)Then PA ` 9zwR(z; ~x; w)$ 9!z9wS(z; ~x; w) by LNP.I claim that the �1-formula 9zS(z; ~x; w) represents the function F . First,for n1; : : : ; nk 2 IN is 9zS(z; n1; : : : ; nk; F (n1; : : : ; nk))a true �1-formula, hence provable in PA by �1-completeness. To show thatPA ` 9!w9zS(z; n1; : : : ; nk; w)11



let a 2 IN such that S(a; n1; : : : ; nk; F (n1; : : : ; nk)) is true. By unicity of z inS we have PA ` 8zw(S(z; n1; : : : ; nk; w)! z = a ^w < a)and since PA ` 8w < a (w = 0 _ � � � _w = a� 1), we havePA ` F (n1; : : : ; nk) < a andPA ` :S(a; n1; : : : ; nk; b) for all b < a, b 6= F (n1; : : : ; nk)since S 2 �0. So, PA ` 9!w9zS(z; n1; : : : ; nk; w).Exercise 18. In the next chapter we shall see that there are �1-sentenceswhich are false in N but consistent with PA. Use this to show that the followingimplication does not hold: for a �1-formula '(w) with only free variable w, if9!w'(w) is true in N , then PA ` 9!w'(w).Exercise 19. Prove that every recursive set is �1-represented in PA.Exercise 20. Let D1; D2; D3; : : : be a sequence of de�nitions of primitive re-cursive functions with the properties that for every k, the function fk de�nedby Dk is either a basic function or de�ned from functions fl with l < k, andevery primitive recursive function is fk for some k.Introduce, for every k, a new function symbol Fk and an axiom 'k, corre-sponding to the de�nition Dk of fk.Let PA0 be the theory in the language LPA [ fF1; F2; : : :g, axiomatized bythe axioms of PA, together with the axioms 'k, and the scheme of inductionextended to the full new language.Prove that there is a mapping (�)� from LPA0-formulas to LPA-formulas,which is the identity on LPA-formulas, such thatPA0 ` '$ (')�PA0 ` ') PA ` (')�for all LPA0 -formulas '. Conclude that PA0 is conservative over PA.Exercise 21. Devise a coding of the de�nitionsDk in the previous exercise, andshow that a recursive sequence D1; D2; : : : exists with the required properties.Can it be primitive recursive?1.3 A Primitive Incompleteness TheoremThe representability of recursive functions allows us to prove already that PAis not a complete theory (this, however, is not quite G�odel's theorem; the lattergives more information). We have to leave one detail to the reader's imagination(it will be fully treated in the next chapter, but it is easy): for every LPA-formula'(w) with exactly one free variable w, the setfn 2 IN jPA ` '(n)gis recursively enumerable. 12



Now we do know, that for every recursively enumerable set X � IN, there isa �1-formula '(w), such that for all n 2 IN:n 2 X , PA ` '(n)(Use the characterization of r.e. sets as projections of recursive sets, repre-sentability of recursive sets in PA, and �1-completeness of PA)Now, let X be a nonrecursive, r.e. set and suppose the �1-sentence ' de�nesX in this sense. Let Y = fn 2 IN jPA ` :'(n)g. Then since PA is consistent, Xand Y are disjoint r.e. sets and since X is not recursive, Y is not the complementof X. Take m 62 X [ Y . Since PA ` '(m) implies m 2 X and PA ` :'(m)impliesm 2 Y , we see that none of these can hold; therefore, '(m) is a sentencewhich is independent of PA.The following exercise is a result which will be needed in the next chapter.We call a formula '(x1; : : : ; xk) �1, or a �1-formula, if both ' and :' areequivalent (in PA) to a �1-formula.Exercise 22. Show that the proof of theorem 1.13 can be adapted to give thefollowing stronger result: for every primitive recursive function F : INk ! INthere is a �1-formula 'F (x1; : : : ; xk+1) which represents F and is such thatPA ` 8x1 � � �xk9!xk+1'F (x1; : : : ; xk+1)
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2 G�odel Incompleteness2.1 Coding of Formulas and DiagonalizationLet us recall a primitive recursive coding of pairs and sequences from basicrecursion theory.Let j(n;m) = (n+m)2+3n+m2 .Exercise 23. Prove that j de�nes a bijection: IN2 ! IN, and that there areprimitive recursive functions j0; j1 : IN ! IN such that x = j(j0(x); j1(x)),j0(j(x; y)) = x and j1(j(x; y)) = y.We have primitive recursive bijections jm : INm ! IN for m � 1, de�nedrecursively byj1(x) = x jm+1(x1; : : : ; xm+1) = j(jm(x1; : : : ; xm); xm+1)and primitive recursive jmi (1 � i � m) such thatjm(jm1 (x); : : : ; jmm (x)) = x and jmi (jm(x1; : : : ; xm)) = xiMoreover, the functionF (x; y; z) = � 0 if y = 0 or y > xjxy (z) elseis primitive recursive.Let IN<! be the set of �nite sequences of natural numbers. We have abijection h�i : IN<! ! IN given by hi = 0 (empty sequence)hx0; : : : ; xm�1i = j(m � 1; jm(x0; : : : ; xm�1)) for m > 0We call hx0; : : : ; xm�1i the code of the sequence x0; : : : ; xm�1. There are prim-itive recursive functions lh and (�)i, such that for every x, lh(x) gives the lengthof the sequence coded by x, and (x)i is the i-th element of the sequence codedby x: lh(x) = � 0 x = 0j1(x� 1) + 1 x > 0(x)i = � jlh(x)i+1 (j2(x � 1)) x > 0 and 0 � i � lh(x)0 elseWe use sequence encoding to assign to any formula ' of LPA a code p'q 2 INand this in such a way that all relevant operations on formulas translate intoprimitive recursive functions on codes.We assume that in our language, variables are numbered v0; v1; : : : . Considerthe following\code book" (from now on we take< as a primitive symbol of LPA):0 1 v + � = < ^ _ ! : 8 90 1 2 3 4 5 6 7 8 9 10 11 1214



For each term t de�ne its code ptq by recursion on t: p0q = h0i, p1q = h1i,pviq = h2; ii; pt+ sq = h3; ptq; psqi, pt�sq = h4; ptq; psqi.It is now immediate that the properties \x is the code of a term", \x codesa constant", \the variable vi occurs in the term coded by x", etcetera, are allprimitive recursive in their arguments.Likewise, we de�ne codes for formulas: pt = sq = h5; ptq; psqi, pt < sq =h6; ptq; psqi, p' ^  q = h7; p'q; p qi, p' _  q = h8; p'q; p qi and so on;p8vi'q = h11; i; p'qi and p9vi'q = h12; i; p'qi.And we have that the properties \x codes a formula", \the main connectiveof the formula coded by x is ^", \the variable vi occurs freely in the formulacoded by x" and so forth, are primitive recursive in their arguments.Exercise 24. Verify this for some of the mentioned properties.Exercise 25. Verify that the property \x codes a formula ' and y codes a termt and t is free for vi in '" is primitive recursive in x; y; i; and show that there isa primitive recursive function Sub, such thatSub(x; y; i) = � p'[s=vi]q if y = p'q and x = psq0 elseExercise 26. Convince yourself that the properties \x is the code of a �0-formula" and \x codes a �1-formula" are primitive recursive.Having done this work, we now arrive at the second main idea of G�odel, theDiagonalization Lemma.We say that ' is a �1-formula if it is of the form 8y1 � � �8yn with  2 �0.Lemma 2.1 (Diagonalization Lemma) For any LPA-formula ' with freevariable v0 there is an LPA-formula  with the same free variables as ' ex-cept v0, such that PA `  $ '[p q=v0]Moreover, if ' 2 �1 then  can be chosen to be �1 too.Proof. Recall the function Sub(x; y; i) fromExercise 25. It is primitive recursivehence so is �xy:Sub(x; y; 0); let S be a �1-formula representing this functionin PA. Let T be a �1-formula representing the primitive recursive functionn 7! pnq. Then we have8nm 2 IN:PA ` S(n;m; Sub(n;m; 0)) (1)8n 2 IN:PA ` T (n; pnq) (2)PA ` 8xy9!zS(x; y; z) (3)PA ` 8x9!yT (x; y) (4)Now let ' have v0 free. De�ne the formula C byC � 8xy(T (v0; x) ^ S(x; v0; y)! '[y=v0])15



and let  be de�ned by  � C[pCq=v0] (5)Clearly, if ' 2 �1 then so are C and  . Now we have by (2) and (4),PA ` 8y(9x(T (pCq; x) ^ S(x; pCq; y))$ S(ppCqq; pCq; y))and (1) and (3) give usPA ` 8y(S(ppCqq; pCq; y)$ y = pC[pCq=v0]q)By (5) then, PA ` 8y(9x(T (pCq; x) ^ S(x; pCq; y))$ y = p q)so PA `  $ 8y(9x(T (pCq; x) ^ S(x; pCq; y))! '[y=v0])$ 8y(y = p q! '[y=v0])$ '[p q=v0]Remark. One should compare the proof of Lemma 2.1 with the proofs of verysimilar theorems, such as the recursion theorem, or the �xpoint theorem in�-calculus.I include the following corollary, which is analogous to Smullyan's \simul-taneous recursion theorem", or Beki�c' Lemma in Domain Theory, for its owninterest. We shall not apply it.Corollary 2.2 (Simultaneous Diagonalization) Let ' and  be formulasboth having the variables v0; v1 free. Then there are formulas � and �, such that� has the same free variables as ' minus v0; v1, and ditto for � and  , such thatPA ` � $ '[p�q=v0; p�q=v1]PA ` �$  [p�q=v0; p�q=v1]And, if ';  2 �1, so are �; �.Proof. Let T be the same formula as in the proof of Lemma 2.1, and S1similar, that is: S1 now represents substitution for the variable v1. So PA `S1(psq; p'q; p'[s=v1]q), etc. Let ' and  be given. First, apply Lemma 2.1 to�nd �1 such thatPA ` �1 $ 8zy(T (v1; z) ^ S1(z; p�1q; y)! '[y=v0; v1])and then � such thatPA ` �$ 8xy(T (p�q; z) ^ S1(z; p�1q; y)!  [y=v0; p�q=v1])Put � � �1[p�q=v1]. Then as in the proof of Lemma 2.1, we have:PA ` T (p�q; pp�qq) ^ S1(pp�qq; p�1q; p�1[p�q=v1]q)PA ` 8y(9z(T (p�q; z) ^ S1(z; p�1q; y)) $ y = p�q)PA ` � $ �1[p�q=v1]$ '[p�q; p�q]and so, also PA ` �$  [p�q; p�q]. 16



2.2 Coding of Proofs and G�odel's First IncompletenessTheoremJust as we have coded formulas, we can code proofs in PA by natural numbers.Since the idea is essentially the same, we give only a sketch. First, we have todecide which proof system we use; let's use natural deduction. Again we makea code book, now of construction steps for natural deduction trees (I have nottried to make the system as economical as possible!):Ass 0 _I� r 5 8E 10 ? 15^I 1 _I� l 6 9I 11 :: 16^E� r 2 ! E 7 9E 12^E� l 3 ! I 8 :I 13_E 4 8I 9 :E 14We view natural deduction proofs as labelled trees; every node is labelled by aformula, and by a rule. Most connectives have an introduction and an elimina-tion rule, sometimes more than one, for example the rule ^E� r (conjunctionelimination to the right) infers  from �^ . The rule :E infers ? from �;:�;the rule ? infers  from ?, the rule :: infers  from :: . The rule Ass (as-sumption) is the only starting rule: it allows one to construct a one-node tree,labelled with a formula '. I hope that the meaning of every rule is now clear.Now every tree has a set of so-called open (or undischarged) assumptions.An assumption is a formula which labels a leaf of the tree. Assumptions aredischarged with the steps! I, :I, _E and 9E. We follow the so-called crude dis-charge convention: that is, whenever we introduce '!  by ! I, we dischargeall assumptions ' above this application.Let us outline the coding of trees. The tree with one node, labelled ', getscode h0; p'qi; suppose D1; D2 are trees with roots labelled by ';  respectively;the tree resulting fromD1 and D2 by applying ^I gets code h1; pD1q; pD2q; p'^ qi, where pD1q denotes the code of D1. If D2 results from D1 by applying^E � r, so the root of D1 is labelled '^ and the root of D2 is labelled  , wehave pD2q = h2; pD1q; p qi. If D4 results from D1; D2; D3 by _-elimination,that is: the root of D1 is labelled ' _  , D2 and D3 have � at the root,and D4 also has � at the root, whereby in D2, all open assumptions ' aredischarged and in D3 all open assumptions  are discharged, we have pD4q =h4; pD1q; pD2q; pD3q; p�qi.I hope the process is now clear: the length of pDq is n + 2 where n is thenumber of branches from the root (in fact, always n � 3), the �rst element ofpDq is the code of the last rule applied, and the last element of pDq is theformula which labels the root of D. In this way, we can easily recover the wholetree D from its code pDq. We can also de�ne a primitive recursive function OA,which, given pDq, gives a code for the set of undischarged assumptions of D.Therefore, we can, primitive recursively, check whether D is in fact a correctproof tree (for example, when introducing 8u'(u) by 8I from '(v), we need toknow that the variable v does not occur in any undischarged assumption, and soon). The conclusion is that we have a primitive recursive predicate NDT(x; y):17



NDT(x; y) says that y is the code of a formula and x is the code of a correctnatural deduction tree with root labelled by the formula coded by y.In order that x codes a proof in PA, we need to know that all open assump-tions of the tree coded by x are axioms of PA, or axioms of the predicate calculusgoverning the equality sign =: the axioms u = u, u = v ^ v = w ! u = w andt = s ^ '[t=u]! '[s=u] (subject to the well-known conditions).Exercise 27. Show that the predicate Ax(x): x is the code of an axiom of PAor the predicate calculus, is primitive recursive.Let Prf(x; y) be the predicate: y is the code of a formula, and x is the codeof a correct proof in PA of the formula coded by y:Prf(x; y)$ NDT(x; y) ^ 8z 2 OA(x)Ax(z)Let Prf, NDT and Ax be �1-formulas representing the predicates Prf, NDT,Ax in PA.The predicate Prf is de�ned by a course-of-values recursion, and we can as-sume that PA proves this course of values recursion for the representing formulaPrf. That is, PA ` Prf(x; y)$ C0(x; y) _ � � � _C16(x; y)(referring to our code book of natural deduction rules), where C0(x; y) is theformula x = h0; yi ^Ax(y)C1(x; y) will be the formula9abvw < x(y = h�7; v; wi ^ Prf(a; v) ^ Prf(b; w)^ x = h�1; a; b; yi)and so on. In some cases, where open assumptions are discharged, we have towrite conditions; e.g., C8 (corresponding to ! I) will read:9avw < x(x = h�8; a; yi^y = h�9; v; wi^NDT(a;w)^8z 2 OA(a)(Ax(z)_z = v))(slightly abusing notation: \z 2 OA(a)" means of course the intended formal-ization)It is now straightforward to see that we have the following proposition:Proposition 2.3i) PA ` ') PA ` 9xPrf(x; p'q)ii) PA ` 8xy(Prf (x; p'!  q) ^ Prf(y; p q)! Prf(h�7; x; y; p qi; p q))We introduce an abbreviation: �' for 9xPrf(x; p'q). Proposition 2.3 now says:D1 PA ` ') PA ` �'D2 PA ` �' ^�('!  ) ! � 18



Theorem 2.4 (G�odel's First Incompleteness Theorem) Apply Lemma 2.1to the formula :9xPrf(x; v0), to obtain a �1-sentence G such thatPA ` G$ :�GThen G is independent of PA.Proof. Since Prf(x; y) is �1, clearly G can be chosen to be �1. If PA ` G thenby D1, PA ` �G, so PA ` :G by the choice of G. So PA is inconsistent, quodnon.On the other hand, if PA ` :G then PA ` �G by the choice of G. Then �Gis true in N , which means that there is a proof of G, i.e. PA ` G, and again PAis inconsistent.Remarks.i) The sentence G is the famous \G�odel sentence". Roughly speaking it says\I am not provable", and it has therefore been compared with several liarparadoxes (see the work by Smullyan and Smorynski).ii) The sentence G is true in N , because if it were false, then :G would be atrue �1-sentence, hence provable in PA by �1-completeness.iii) In the proof of Theorem 2.4, we have used the reasoning: \if PA ` 'then N j= '" (in fact, we only used this for the �1-sentence :G). Thisis not satisfactory, because we would like to extend G�odel's method toconsistent extensions of PA, which need not have this property, even for�1-sentences (for example, PA[f:Gg is such a theory). A way of avoidingthis reasoning was found by Rosser, a few years after G�odel. Let '(v0) bethe formula 8x(Prf(x; v0)! 9y < xPrf(y; h10; v0i))Check that '(v0) is equivalent to a �1-formula! Apply Lemma 2.1 to'(v0), to obtain a �1-sentence R such thatPA ` R$ 8x(Prf(x; pRq)! 9y < xPrf(y; p:Rq))We can show that R is independent of PA, just using that PA is consistentand �1-complete. Suppose PA ` R. By consistency of PA, PA 6` :R,whence the sentence9x(Prf(x; pRq) ^ 8y < x:Prf(y; p:Rq))is a true �1-sentence, hence by �1-completeness provable in PA. But thissentence is equivalent to :R, contradiction. Conversely, if PA ` :Rwe have for some n 2 IN that PA ` Prf(�n; p:Rq) and PA ` 8y <�n:Prf(y; pRq), since these are true �1-sentences. It follows that PA `8x(Prf(x; pRq)! 9y < xPrf(y; p:Rq)), that is PA ` R. Again, a contra-diction with the consistency of PA.19



iv) The sentence :�? is called the sentence expressing the consistency ofPA, and often written as ConPA. It is an easy consequence of D2 thatPA ` �? ! � for any  , so we have PA ` G ! ConPA. In the nextsection, we shall see that in fact, PA ` G$ ConPA, from which it followsthat PA 6` ConPA. This is G�odel's Second Incompleteness Theorem: PAdoes not prove its own consistency".A number of exercises to �nish this section:Exercise 28. Show that for any formula '(v) with one free variable v, the setfn 2 IN jPA ` '[�n=v]gis recursively enumerable. Conclude that if a function is numeralwise repre-sentable in PA, it is recursive, hence �1-representable.Exercise 29. De�ne a function F : IN! IN by:F (n) = maxf�m:N j= �[n; j0(m); j1(m)] j � 2 �(n)g + 1where �(n) is the set of all �0-formulas �(u; v; w) such thatp�(u; v; w)q < n and 9y < nPrf(y; p8u9v9w�(u; v; w)q)(and the maximum of the empty set is 0).i) Show that F is total recursive;ii) show that F cannot be provably recursive.Exercise 30. (Tarski's theorem on the non-de�nability of truth). ApplyLemma 2.1 to show that there is no formula of LPA which de�nes the set oftrue LPA-sentences, i.e. ifA = fn 2 IN jn is the code of a sentence ' such that N j= 'gthen there is no formula  (v) such that for all n 2 IN:n 2 A,N j=  [n]2.3 Formalized �1-completeness and G�odel's Second In-completeness TheoremAs we said in the preceding section, G�odel's Second Incompleteness Theoremasserts that \PA does not prove its own consistency". More formally: PA 6`ConPA (recall that ConPA is the sentence :�?).Recall that we had derived (proposition 2.3) the following rules governingthe operation �: D1 PA ` ' ) PA ` �'D2 PA ` �('!  ) ^�' ! � 20



Exercise 31. Prove that for any operation �, satisfying D1 anfd D2, one has:PA ` �(' ^  )$ �' ^� Our aim in this section is to prove that we have a third rule:D3 PA ` �'! ��'Let us see that this implies what we want:Theorem 2.5 For any operation � satisfying D1{D3 and any G such that PA `G$ :�G, we have PA ` G$ :�?Proof. Since PA ` ? ! G, by D1 and D2 we have PA ` �? ! �G, soPA ` G! :�G! :�?.For the converse implication, we have from D2 and the assumption on G,PA ` �G! �(:�G); by D3 we have PA ` �G! ��G. Combining the two,we have PA ` �G! �?, so PA ` :G! �G! �?, whence PA ` :�?! G.Corollary 2.6 (G�odel's Second Incompleteness Theorem)PA 6` ConPAProof. Immediate.The rule D3, which we want to prove, is in fact a consequence of a more generaltheorem, which is known as \Formalized �1-completeness". This is because �'is a �1-sentence.Theorem 2.7 (Formalized �1-completeness of PA) For every �1-sentenceof PA, PA ` '! �'The rest of this section is devoted to the proof of theorem 2.7. Let us recallhow we proved ordinary �1-completeness. We proved that for any �0-formula'(v0; : : : ; vk�1) and for every k-tuple of natural numbers n0; : : : ; nk�1:(y) N j= '[n0; : : : ; nk�1] ) PA ` '[n0=v0; : : : ; nk�1=vk�1]We follow a similar line in the formalized case. We now assume that LPA isaugmented with function symbols h�; : : : ; �i, lh, (�)i for the manipulation of se-quences. We also take a function symbol T , representing the primitive recursivefunction n 7! pnq; and we want function symbols Sf and St representing the21



primitive recursive substitution operations on formulas and terms, respectively:Sf (y; x) = 8>><>>: p'[s0=v0; : : : ; sk�1=vk�1]q if y is a code for ',lh(x) = k, and for each i < k(x)i is a code for si0 elseSt(y; x) = 8>><>>: pt[s0=v0; : : : ; sk�1=vk�1]q if y is a code for t,lh(x) = k, and for each i < k(x)i is a code for si0 elseAs before, we may assume that PA proves the recursions for these functions. Inparticular, we may assume that the sentencesT (0) = h0iT (x + 1) = h�3; T (x); h1iiSt(h�3; ptq; psqi; x) = h�3; St(ptq; x); St(psq; x)iSt(h�4; ptq; psqi; x) = h�4; St(ptq; x); St(psq; x)iSf (h�5; ptq; psqi; x) = h�5; St(ptq; x); St(psq; x)i...are provable in PA. The formalization of statement (y) above is:Lemma 2.8 For every �0-formula '(v0; : : : ; vk�1) we have:PA ` 8x0 � � �xk�1('(~x)! 9yPrf(y; Sf (p'q; hT (x0); : : : ; T (xk�1)i)))The proof of Lemma 2.8 goes via the auxiliary lemmas 2.9, 2.10 and 2.11 below.Lemma 2.9PA ` 8xy9zPrf(z; h�5; T (x+ y); St(pv0 + v1q; hT (x); T (y)i)i)PA ` 8xy9zPrf(z; h�5; T (x�y); St(pv0�v1q; hT (x); T (y)i)i)Proof. Check, that these statements are formalizations of the statements thatPA ` n+m = n+m and PA ` n�m = n�m.By the recursion equations for St we have thatSt(pv0 + v1q; hT (x); T (y)i) = h�3; T (x); T (y)iso we must prove 9zPrf(z; h�5; T (x+ y); h�3; T (x); T (y)ii)which we do by induction on y. For y = 0, T (y) = h0i and we observe thath�5; T (x); h�3; T (x); h0iii = Sf (pv0 = v0 + 0q; hT (x)i)Since 8v0(v0 = v0 + 0) is the universal closure of a PA-axiom, we have by onestep (8E), 9zPrf(z; Sf (pv0 = v0 + 0q; hT (x)i))22



For the induction step, assume9zPrf(z; h�5; T (x+ y); h�3; T (x); T (y)ii)Then by applying a substitution axiom for equality, also9zPrf(z; h�5; h�3; T (x+ y); h1ii; h�3; h�3; T (x); T (y)i; h1iii)By an application of the axiom 8uv((u + v) + 1 = u+ (v + 1)) we have9zPrf(z; h�5; h�3; h�3; T (x); T (y)i; h1ii; h�3; T (x); h�3; T (y); h1iiii)But h�3; T (y); h1ii = T (y + 1) by the recursion equations for T , which also giveh�3; T (x+ y); h1ii = T (x+ (y + 1)) = T ((x+ y) + 1), so by applying transitivityof equality we get9zPrf(z; h�5; T (x+ (y + 1)); h�3; T (x); T (y + 1)ii)as desired.The proof of the second statement is similar (and uses the �rst!).The proof of lemma 2.9 was, of course, quite unreadable, but the point is thatone has a precise idea of what one is doing. One cannot write, for example, thath�3; T (x); T (y)i = pT (x) + T (y)q; but, T (x) and T (y) are, \in PA", codes forterms ~x and ~y, so that \h�3; T (x); T (y)i = p~x+ ~yq" but again this is imprecise,because our coding acts on real terms only. The following notational conventiongives a precise way of getting some clari�cation: for any formula'(v0; : : : ; vk�1),we let p'(fx0; : : : ;]xk�1)qbe an abbreviation for Sf (p'q; hT (x0); : : : ; T (xk�1)i). We write�'(fx0; : : : ;]xk�1)for 9zPrf(z; p'(fx0; : : : ;]xk�1)q). With these conventions, Lemma 2.9 becomes:PA ` 8xy � (]x+ y = ex+ ey)PA ` 8xy � (fx�y = ex�ey)It is now straightforward (by induction on the term) to show that for any termt(v0; : : : ; vk�1) we have:PA ` 8x0 � � �xk�1 � ^t(x0; : : : ; xk�1) = t(fx0; : : : ;]xk�1)Exercise 32. Carry out this proof.The following lemma is an immediate consequence.Lemma 2.10 For terms t(v0; : : : ; vk�1) and s(v0; : : : ; vk�1) we havePA ` 8x0 � � �xk�1(t(~x) = s(~x)! �(t(fx0; : : : ;]xk�1) = s(fx0; : : : ;]xk�1)))PA ` 8x0 � � �xk�1(t(~x) < s(~x)! �(t(fx0; : : : ;]xk�1) < s(fx0; : : : ;]xk�1)))23



We are now ready for the �nal induction.Lemma 2.11 Let � be the set of formulas '(v0; : : : ; vk�1) for whichPA ` 8x0 � � �xk�1('(x0; : : : ; xk�1)! �'(fx0; : : : ;]xk�1))Then � contains all formulas of form t = s and t < s, and � is closed underconjunction, disjunction and bounded quanti�cation.Proof. That � contains all formulas t = s and t < s, is lemma 2.10. Theinduction steps for ^ and _ are easy.Now suppose '(v0; : : : ; vk�1) has the form 9vk < v0 (v0; : : : ; vk), for  2 �.Then 8x0 � � �xk�1('(~x)! �'(fx0; : : : ;]xk�1)) is equivalent (in PA) to8x0 � � �xk(xk < x0 ^ (x0; : : : ; xk)! �(9vk <fx0 (fx0; : : : ;]xk�1; vk)))Since  2 �, vk < v0 2 � and by the induction step for ^, we havePA ` 8x0 � � �xk(xk < x0 ^ (x0; : : : ; xk)! �(fxk <fx0 ^  (fx0; : : : ;fxk)))so the desired conclusion follows by an application of 9I.Now suppose ' is 8vk < v0 (v0; : : : ; vk) with  2 �. We prove the implication:8vk < x0 (x0; : : : ; xk�1; vk)! �(8vk <fx0 (fx0; : : : ;]xk�1; vk))by induction on x0. For x0 it holds trivially; for the induction step we observethat 8vk < x0 + 1 $ 8vk < x0 ^ (x0; : : : ; xk�1; x0)so that8vk < v0 ! �(8vk <fx0 (fx0; : : : ;]xk�1; vk) ^  (fx0; : : : ;]xk�1;fx0))We also have 8x0 � (x̂0 + 1 = fx0 + 1) and8x0 � (8vk(vk <fx0 + 1$ vk <fx0 _ vk =fx0))so we obtain the desired implication8vk < x0 + 1 ! �8vk <fx0 (fx0; : : : ;]xk�1; vk)Exercise 33.i) Show that lemma 2.11 is su�cient to prove Lemma 2.8. That is, showthat the set � contains all �0-formulas;ii) show that, in turn, Lemma 2.8 implies Theorem 2.7.24



Remark The proof of G�odel's Incompleteness Theorems can be carried outfor any recursively enumerable extension of PA. By this we mean: a theory,formulated in a language which is coded in a recursive way, and with axiomswhose codes form an r.e. set. In fact, we don't need the full force of PA here. Anyrecursively enumerable theory T which has enough arithmetic to represent (andprove the recursion equations of) the necessary primitive recursive functions,can formulate its own consistency ConT , and if T is consistent, then T 6` ConT .An important example is ZFC: set theory with the axiom of Choice. Hereis an example of an application of G�odel's Second Incompleteness Theorem toZFC. A cardinal number � is called strongly inaccessible if � > @0, � is regular,and 8� < �(2� < �). One can prove, in ZFC, that if � is strongly inaccessible,then V� is a model of ZFC. Therefore, in ZFC, if � is strongly inaccessible, ZFCis consistent. By G�odel's Second Incompleteness Theorem, ZFC 6` I where I isthe statement: there is a strongly inaccessible cardinal. But one may wish toknow whether ZFC+I is consistent. The question becomes: assuming ConZFC,can we prove ConZFC+I? Again no, for we have seen that ZFC + I ` ConZFC,so if ZFC + ConZFC ` ConZFC+I, then ZFC + I ` ConZFC+I which contradictsthe Second Incompleteness Theorem, applied to the theory ZFC+I.Another application of Theorem 2.6 to an extension of PA is L�ob's Theorem.L�ob's theorem says that although the formula �' ! ' is true in N , it isprovable in PA only if ' is provable in PA:Theorem 2.12 (L�ob's Theorem) If PA ` �'! ', then PA ` '.Proof. If PA 6` ' then PA+:' is consistent, so by the Second IncompletenessTheorem, applied to PA+:', PA+:' 6` ConPA+:'. But now, in PA, ConPA+:'is equivalent to :�'. So we have PA + :' 6` :�', whence PA 6` �'! '.Exercise 34. Prove L�ob's Theorem directly from Lemma 2.1, by taking asentence  such that PA `  $ �( ! ')Use the properties D1{D3.Exercise 35. As before, but now take  satisfyingPA `  $ (� ! ')
25



3 Models of PA: Introduction3.1 The theory PA� and end-extensionsFrom now on, we take the symbol < as part of the language LPA, so everyLPA-structure M carries a binary relation <M.I repeat that the symbol N will always denote the standard model.We shall �nd it useful to consider some LPA-structures that are not modelsof PA, but of a weaker theory PA�, which we therefore now introduce.De�nition 3.1 PA� is the f+; �;<; 0; 1g-theory with axioms stating that:1) + and � are commutative and associative and � distributes over +;2) 8x(x�0 = 0 ^ x�1 = x ^ x+ 0 = x)3) < is a linear order satisfying 8x(0 � x) and 8x(0 < x$ 1 � x)4) 8xyz(x < y ! x+ z < y + z)5) 8xyz(0 < z ^ x < y ! x�z < y�z)6) 8xy(x < y ! 9z(x + z = y))So, every model of PA� is a linear order. IfM1 andM2 are LPA-structures andM1 is a substructure ofM2, we say thatM1 is an initial segment ofM2, orM2 is an end-extension ofM1, if for all m 2M2 and n 2M1, ifM2 j= m < nthen m 2M1. Notation: M1 �eM2.IfM is any model of PA�, the function n 7! nM : IN!M is an embeddingof LPA-structures.Exercise 36. Prove this, and prove also that this mapping embeds N as initialsegment inM.If � is a class of formulas, and M1 a LPA-substructure of M2, we say thatM1 is a �-elementary substructure ofM2, notation: M1 ��M2, if for every'(v1; : : : ; vk) 2 � and all k-tuples m1; : : : ;mk 2M1,M1 j= '[m1; : : : ;mk],M2 j= '[m1; : : : ;mk]Exercise 37. Let M1 �e M2 and M1, M2 models of PA�. Show thatM1 ��0 M2.Exercise 38. Show that for any inclusion M1 � M2 of models of PA, thatM1 ��0 M2 impliesM1 ��1 M2.Exercise 39. Show that PA� proves all true �1-sentences.Exercise 40. Show that for LPA-structures M1 andM2: ifM1 �e M2 andM2 is a model of PA�, thenM1 is a model of PA�.26



3.2 Cuts, Overspill and UnderspillLetM be a model of PA. A cut ofM is a nonempty subset I � M such thatx < y and y 2 I implies x 2 I, and x 2 I implies x+ 1 2 I. A cut I is proper ifI 6=M. The following easy lemma is of fundamental importance in the studyof nonstandard models of PA.Lemma 3.2 Let M be a model of PA, and I � M a proper cut. ThenI is not de�nable in parameters from M, that is: there is no LPA-formula'(v1; : : : ; vk+1) such that for some m1; : : : ;mk 2 M:I = fm 2MjM j= '[m1; : : : ;mk;m]gProof. Since I is nonempty, 0 2 I. Moreover, m 2 I implies m + 1 2 I. WereI de�nable by ' in parameters m1; : : : ;mk as in the Lemma, then since Msatis�es induction, we would have I =M.Corollary 3.3 (Overspill Lemma) Let M be a model of PA and I � M aproper cut. If m1; : : : ;mk 2 M and M j= '[m1; : : : ;mk; b] for every b 2 I,then there is c 2Mn I such thatM j= 8y � c'[m1; : : : ;mk; y]Proof. Certainly, for all c 2 I we haveM j= 8y � c'[m1; : : : ;mk; y]; so if suchc 2Mn I would not exist, we would haveI = fc jM j= 8y � c'[m1; : : : ;mk; y]gcontradicting the non-de�nability of I of Lemma 3.2.Corollary 3.4 Again letM be a model of PA and I �M a proper cut. Supposethat for ', m1; : : : ;mk 2M we have: for all x 2 I there is y 2 I withM j= y � x ^ '[m1; : : : ;mk; y]Then for each c 2Mn I there is b 2Mn I withM j= b < c ^ '[m1; : : : ;mk; b]Proof. Apply Corollary 3.3 to the formula9y(x � y < c ^ '[m1; : : : ;mk; y])Corollary 3.5 (Underspill Lemma) Let M a model of PA and I � M aproper cut.i) If for all c 2 Mn I,M j= '[m1; : : : ;mk; c], then there is b 2 I such thatM j= 8x � b'[m1; : : : ;mk; x];ii) if for all c 2MnI there is x 2MnI withM j= x < c^'[m1; : : : ;mk; x],then for all b 2 I there is y 2 I withM j= b < y ^ '[m1; : : : ;mk; y].Exercise 41. Prove Corollary 3.5. 27



3.3 The ordered Structure of Models of PAWe study now the order-type of models of PA; that is, their f<g-reduct.If A and B are two linear orders, we order the set A � B lexicographically,that is: (a; b) < (a0; b0) i� a < a0 or a = a0 ^ b < b0. A � B is then also a linearorder, and the picture is: replace every a 2 A by a copy of B. By A + B wemean the ordered set which is the disjoint union of A and B, and in which everyelement of A is below every element of B.Theorem 3.6 Let M be a nonstandard model of PA. Then as ordered set,M�= N+A�Zwhere A is a dense, linear order without end-points. Therefore,ifM is countable,M�= N+Q�ZProof. M has N as initial segment, soM�= N+X for some linear order X. Fornonstandard a 2M, let Z(a) the set of elements ofM which di�er from a by astandard element: a0 2 Z(a) i� for some n 2 IN,M j= a0+n = a_a+n = a0. Ifa; b 2M are nonstandard elements and a 62 Z(b), then Z(a) \ Z(b) = ;, and ifmoreover a < b, we have x < y for every x 2 Z(a) and y 2 Z(b). Since clearly,every Z(a) is order-isomorphic to Z, we haveM �= N+ A �Z, where A is thecollection of all sets Z(a), ordered by: Z(a) < Z(b) i� a < b.Now A is dense, for given a; b nonstandard, if Z(a) < Z(b) then Z(a) <Z([a+b2 ]) < Z(b) (check!).A has no endpoints: for every nonstandard a we have Z([a2 ]) < Z(a) <Z(a + a) (check this too!).The �nal statement of the theorem follows from the well-known fact thatevery countable dense linear order without end-points is order-isomorphic to Q.We shall now see some examples of proper cuts of a nonstandard model M.For us, the interesting cuts are initial segments, that is: cuts which are closedunder the operations +; � in M (such cuts are then LPA-substructures of M,and hence models of PA�, ifM is).Examples.1) Let M be a nonstandard model of PA, and a 2 M nonstandard. By aNwe mean the setfm 2Mj for some n 2 N,M j= m < angConvince yourself that aNis closed under the operations +; � ofM. More-over, a 2 aN. It is easy to see, that aNis the smallest initial segment ofM that contains a. It is also easy to see, that aN6=M, for aa 62 aN. Bythe same token, aNis not a model of PA.2) Let a 2M be nonstandard as before. By a1=Nwe mean the setfm 2Mj for all n 2 N,M j= mn < agAgain, a1=Nis closed under +; � and is a proper initial segment since a 62a1=N. Since N � a1=N, for every n 2 N we have M j= nn < a; by28



the Overspill Lemma, there is a nonstandard element c 2 M such thatM j= cc < a. Clearly then, c 2 a1=NnN.The following exercises both require use of the Overspill Lemma.Exercise 42. Show that for a 2 M nonstandard, m 2 M n aNif and only ifac < m for some nonstandard c 2M.Exercise 43. Let a 2M be nonstandard.a) Show that for each n 2 N there is b 2 M such that M j= bn � a <(b+ 1)n+1. Show that for each such b,M j= bb > a;b) show that a1=Nis not a model of PA, by showing that there is c 2 a1=NwithM j= cc > a.The following exercise explains the name \cut".Exercise 44. Let M be a countable nonstandard model of PA and I � M aproper cut which is not the standard cut N. Suppose that I is closed under +.Then under the identi�cationM�= N+Q�Zof 3.6, I corresponds to N+A�Z,where A � Q is a Dedekind cut: a set of form fq 2 Q j q < rg for some realnumber r.Exercise 45. Let M be a nonstandard model of PA; by theorem 3.6, writeM �= N+ A �Zas ordered structures, with A a dense linear order withoutend-points. Show that A cannot be order-isomorphic to the real line R [Hint:let m 2 M be nonstandard and consider the set fZ(m��n) jn 2 Ng as subset ofA].Theorem 3.7 LetM be a countable, nonstandard model of PA. Then M has2@0 proper cuts which are closed under + and �.Proof. De�ne an equivalence relation on the set of nonstandard elements ofMby: a � b i� for some n 2 N,a � b < an or b � a < bnClearly, this is an equivalence relation, and the set A of �-equivalence classes ofMnN is linearly ordered by [a] <A [b] i� a < b inM. Suppose [a] <A [b]. Thenan < b for each n 2 N. So for each n 2 N, there is x with an < x < xn+2 < b;that is, the formula 9x(ay < x < xy+2 < b)is satis�ed (inM) by all standard elements y. By the Overspill Lemma, thereis a nonstandard c such that for some x 2M,ac < x < xc < bIt follows that [a] <A [x] <A [b]. So the ordering (A;<A) is dense, and by asimilar overspill argument one deduces that it has no end points.29



Therefore, sinceMwas countable, there is an isomorphism (A;<A) �= (Q; <)and hence a surjective, �-preserving mapMnN! (Q;<)The inverse image of each Dedekind cut in Q de�nes a proper cut inM, whichis closed under + and �. Since there are 2@0 Dedekind cuts in Q, the theorem isproved.3.4 Co�nal extensions; MRDP Theorem and Gaifman'sSplitting TheoremInitial segments are one extreme of inclusions of models; the other extreme isthe notion of a co�nal submodel. IfM1 �M2 are models of PA�, we say thatM1 is co�nal inM2, orM2 is a co�nal extension ofM1, if for every m 2M2there is m0 2M1 such that m < m0 inM2. Notation: M1 �cf M2.We extend the notions of �1 and �1-formulas to arbitrary n, by puttinginductively: a formula is �n+1 i� it is of form 9~y with  2 �n; a formulais �n+1 i� it is of form 8~y with  2 �n. Clearly, every formula is (up toequivalence in predicate logic) �n for some n. In the de�nition of �n and �nwe allow the string ~y to be empty, so that every �n-formula is automatically�n+1 and �n+1. First an easy lemma which gives a simpli�ed condition forwhen an extension is �n-elementary.Lemma 3.8 Let M1 � M2 be an inclusion of LPA-structures. If n > 0 andfor each �n-formula �(~x) and every tuple ~a of elements ofM1 we haveM2 j= �[~a])M1 j= �[~a]then M1 ��n M2.Proof. For the converse direction, let �(~x) � 9~y'(~x; ~y) (with ' 2 �n�1) andsuppose M1 j= �[~a] soM1 j= '[~a;~b] for some tuple ~b of elements ofM1. Since:' is trivially �n, we cannot have M2 j= :'[~a;~b]; so M2 j= '[~a;~b] henceM2 j= �[~a].Theorem 3.9 Let M1 �cf M2 be a co�nal extension of models of PA� suchthatM1 ��0 M2. IfM1 is a model of PA thenM1 �M2.Proof. First we prove, using the criterion of lemma 3.8, thatM1 ��2 M2; andthen that for n � 2, ifM1 ��n M2 thenM1 ��n+1 M2.Let �(~x) be a �2-formula, �(~x) � 9~y8~z (~x; ~y; ~z) with  2 �0, and supposefor ~a 2 M1 that M2 j= �[~a], so there is ~b = b1; : : : ; bk in M2 such thatM2 j= 8~z [~a;~b; ~z]. NowM1 �cf M2, so there is b 2 M1 with b1; : : : ; bk < b;thenM2 j= 9~y < b8~z [~a; ~y; ~z]. Then certainly for all c 2M1 we haveM2 j= 9~y < b8~z < c [~a; ~y; ~z]30



This is a �0-formula, so because M1 ��0 M2 we haveM1 j= 8w9~y < b8~z < w [~a; ~y; ~z]Now we use the assumption that M1 is a model of PA and satis�es thereforethe Collection Principle: it follows, thatM1 j= 9~y < b8~z [~a; ~y; ~z](since its negation 8~y < b9~z: implies, by Collection, 9w8~y < b9~z < w: )In particular, M1 j= 9~y8~z [~a; ~y; ~z]. By lemma 3.8 we may conclude thatM1 ��2 M2.For the inductive step, now assumeM1 ��n M2 for n � 2. Then sinceM1is a model of PA andM1 ��2 M2, the pairing function is a bijection fromM22toM2 (because this is expressed by a �2-formula which is true inM1). Thishas for e�ect that we can contract strings of quanti�ers into single quanti�ers,so for a �n+1-formula  (~x) we may assume it has the form  � 8y9z'(~x; y; z)with ' 2 �n�1.Suppose for ~a 2 M1 that M1 j=  [~a]. In order to show M2 j=  [~a], weshow that for each b 2 M1, M2 j= 8y < b9z'[~a; y; z], which su�ces sinceM1 �cf M2.Recall Theorem 1.9; since M1 j= 8y9z' and M1 is a model of PA, by theinduction axioms of PA we haveM1 j= 9a;m8y < b8z(z = (a;m)y ! '[~a; y; z])But this is �n (check!), soM2 j= 9a;m8y < b8z(z = (a;m)y ! '[~a; y; z])Since certainlyM2 j= 8a;m8y9z(z = (a;m)y) (because this is a �2-formula),we have thatM2 j= 8y < b9z'[~a; y; z], as desired.We have proved: M1 j=  [~a] ) M2 j=  [~a] for every �n+1-formula  (~x)and every tuple ~a from M1; so M2 j=  [~a] ) M1 j=  [~a] for every �n+1-formula  (~x) and every tuple ~a fromM1; by lemma 3.8, we are done.The following result we need, although very easy to state, is quite deep, and wewon't prove it. It is the famousMatiyasevich-Robinson-Davis-PutnamTheorem,which was used to show that Hilbert's 10th Problem cannot be solved (thereis no algorithm which decides for an arbitrary polynomial P (~x) with integercoe�cients and an arbitrary number of unknowns, whether the equation P (~x) =0 has a solution in the integers).Theorem 3.10 (MRDP Theorem) For every �1-formula '(~x) there is aformula  (~x) of form 9~y�(~x; ~y) with � quanti�er-free, such thatPA ` 8~x('(~x)$  (~x))31



The MRDP Theorem means we can eliminate bounded quanti�ers from �1-formulas. The following exercise gives its relevance to Hilbert's 10th Problem.Exercise 46. Show that for every quanti�er-free LPA-formula '(y; ~x) there arepolynomials P (y; ~x) and Q(y; ~x) such that for all tuples ~n of natural numbers:N j= 9y'[y; ~n] if and only if the equation P (y; ~n) = Q(y; ~n) has a solution inIN.Corollary 3.11 Any inclusion between models of PA is �0-elementary.Proof. Let �(~x) be �0. Since both � and :� are �1, by the MRDP Theoremthere are quanti�er-free formulas ' and  such thatPA ` 8~x(�(~x)$ 9~y'(~x; ~y))PA ` 8~x(:�(~x)$ 9~z (~x; ~z))Now letM1 �M2 be an inclusion of models of PA. If, for ~a 2M1,M1 j= �[~a]then for certain ~b 2 M1,M1 j= '[~a;~b]. Since ' is quanti�er-free,M2 j= '[~a;~b]and so M2 j= �[~a], since M2 is a model of PA. The argument in the otherdirection uses the equivalence for :�, and is the same.Theorem 3.12 (Gaifman's Splitting Theorem) Let M1 � M2 be an in-clusion of models of PA. Then there is a unique model K with M1 �cf K �eM2. Moreover,M1 � K, so K is a model of PA too.Proof. Clearly, there is at most one K with M1 �cf K �e M2; we have totake K = fm 2M2 j for some n 2 M1;m < ngThen K is a LPA-substructure ofM2, as well as an initial segment of it, so Kis a model of PA� and K ��0 M2. SinceM1 ��0 M2 by Corollary 3.11, alsoM1 ��0 K (check this!). Theorem 3.9 now givesM1 � K.Corollary 3.13 Every nonstandard model of PA has proper elementary co�nalextensions.Proof. LetM be a nonstandard model of PA. Let L0 be LPA augmented withconstants m for every m 2 M, as well as a new constant c. Let b 2 M benonstandard and consider the theoryTh(M) [ fc 6= m jm 2Mg [ fc < bgBy compactness, this theory has a modelM0 which is an elementary extensionofM; applying theorem 3.12 to the inclusionM�M0 givesM�cf K �eM0withM� K. Moreover, c 2 K nM, so the extension is proper.32



3.5 Prime Models and Existence of Elementary End-ex-tensionsIn this section we shall ultimately see that every modelM of PA has a properelementary end-extension. For countable M, this is a relatively easy OmittingTypes argument, given below; but the general case needs a more sophisticatedapproach. We shall review the theory of prime models of complete theoriesextending PA, and then, by a rather tricky argument, �nd a proper elementaryend-extension of any given modelM as a particular prime model. First, let usdo the countable case. From now on, LPA(M) always denotes the language LPAaugmented with constants from the modelM. Let c be a new constant, andconsider, in the language LPA(M) [ fcg, the theory TM(c):TM(c) = f� 2 LPA(M) jM j= �g [ fc > m jm 2MgFor every a 2M, let �a(x) be the type�a(x) = fx < ag [ fx 6= b j b 2MgEvery model of TM(c) is a proper elementary extension ofM, and it is an end-extension if and only if it omits each �a(x). SinceM is countable, we may, bythe Extended Omitting Types Theorem, conclude that there is such a model,provided we can show that TM(c) locally omits each �a(x).Suppose that there is an LPA(M)-formula '(u; v) such that:(1) TM(c) ` '(u; c)! u < a(2) For all b 2M : TM(c) ` '(u; c)! u 6= bBy de�nition of TM(c), (1) implies that there is n1 2M such that(3) M j= 8x > n18u('(u; x)! u < a))And similarly (2) implies that for every b 2 M there is nb 2 M such thatM j= 8x > nb8u('(u; x)! u 6= b)). By induction inM, it follows that(4) M j= 8z9y8x > y8u('(u; x)! u > z))If n2 is such thatM j= 8x > n28u('(u; x)! u > a)), then for n = max(n1; n2)we have M j= 8x > n8u:'(u; x)and therefore, TM(c) ` 8u:'(u; c). So we see that our assumption leads to theconclusion that '(u; c) is inconsistent with TM(c), which therefore locally omits�a(x).Since the Omitting Types theorem is false for uncountable languages and foruncountably many types (see, e.g., Chang & Keisler), the general case turns outto be more complicated. 33



3.5.1 Prime ModelsLet M be a model of PA and A � M. By K(M;A) we denote the set ofelements ofM which are de�nable over A. That is, those elements a for whichthere is a formula �a(x; u1; : : : ; un) of LPA and elements a1; : : : ; an 2 A suchthat M j= 8x(�a(x; a1; : : : ; an)$ x = a)Let LPA(A) the language with constants from A added, and Th(M)A theLPA(A)-theory which is true inM.Theorem 3.14i) K(M;A) is an LPA(A)-substructure of M, and A � LPA(A) � M asLPA(A)-structures;ii) For every model M0 of Th(M)A there is a unique LPA(A)-elementaryembedding from K(M;A) intoM0;iii) K(M;A) has no proper LPA(A)-elementary substructures and no nontriv-ial LPA(A)-automorphisms.Proof. i) Certainly A � K(M;A) since every a 2 A is de�ned over A by theformula x = a. If a and b are de�ned by LPA(A)-formulas �a(x) and �b(x)respectively, then a+ b is de�ned by 9zw(�a(z) ^ �b(w) ^ x = z + w); similarlya�b is de�ned over A. So K(M;A) is an LPA(A)-substructure of M. To seethat K(M;A) �M we employ the Tarski-Vaught test. Let 9x' be an LPA(A)-sentence which is true inM. Since M satis�es the least number principle, wehave M j= 9x('(x) ^ 8y < x:'(y))The formula '(x) ^ 8y < x:'(y) now de�nes an element of K(M;A) whichsatis�es ', so K(M;A) j= 9x'ii) For every a 2 K(M;A) let �a(x) be an LPA(A)-formula de�ning a. For amodelM0 of Th(M)A, send a to the unique element a0 ofM0 such thatM0 j=�a(a0). This de�nes a mapping h : K(M;A) !M0. This does not depend onthe choices for �a, because if a is also de�ned by �a, then M and M0 satisfythe formula 8x(�a(x) $ �a(x)). One sees that h is an embedding of LPA(A)-structures, and the proof that it is elementary, is by a similar application of theTarski-Vaught test as in i). Finally, h must be unique with these properties,since h(a) must satisfy �a(x).iii) Since every LPA(A)-automorphism of K(M;A) is an LPA(A)-elementaryembedding, there can be at most one such by ii); so the identity function is theonly one.IfM0 � K(M;A) is a proper LPA(A)-elementary substructure, by ii) thereis a unique LPA(A)-elementary embedding h : K(M;A) ! M0. Composingwith the identity gives an elementary embedding of K(M;A) into itself. By ii),34



there is only one such, which is the identity. But this cannot factor through aproper subset, of course.From the proof of theorem 3.14 we see that ifM0 is a model of Th(M)A andA0 �M0 is the set of interpretations of the constants from A, then the uniqueh : K(M;A) ! M0 takes values in K(M0;A0). By symmetry, we must havethat the models K(M;A) and K(M0;A0) are isomorphic. Therefore, the modelK(M;A) is determined by the theory Th(M)A, and does not depend onM orA. If A = ;, we write K(M) for K(M;A). In view of the remark above, forevery consistent, complete LPA-theory T extending PA we have a prime modelKT which we can take to be K(M) for any modelM of T .Exercise 47. This exercise recalls some notions from Model Theory. Givena complete theory T in a countable language L, we say that an L-formula'(x1; : : : ; xn) is complete in T if it is consistent with T and for any other L-formula  (x1; : : : ; xn), either T ` 8x1 � � �xn('(~x)!  (~x)) orT ` 8x1 � � �xn('(~x)! : (~x)) (Equivalently, T [ f'(c1; : : : ; cn)g is a completeL [ fc1; : : : ; cng-theory, where c1; : : : ; cn are new constants). The theory T iscalled atomic if for every L-formula '(~x) which is consistent with T , there is acomplete formula  (~x) such that T ` 8~x( (~x)! '(~x)).Show that every complete extension of PA is atomic.Exercise 48. Let T be a complete, consistent extension of PA in a languageLPA[C, where C is a new set of constants. LetM be a model of T and A �Mthe set of interpretations of the constants from C. Assume that for c 6= c0 2 C,T ` c 6= c0. Show that for every LPA [C-type �(x) which is consistent with T ,K(M;A) realizes �(x) if and only if T locally realizes �(x).3.5.2 Conservative Extensions and MacDowell-Specker TheoremThe MacDowell-Specker Theorem asserts what we announced as our main resultfor this section: every model of PA has a proper elementary end-extension. Theway we shall prove it, it comes out as a corollary of another theorem.IfM1 �M2 is an inclusion of models of PA, we say thatM2 is a conservativeextension of M1, if for every subset X of M2, if X is de�nable in M2 inparameters from M2 (that is: there is �(x; u1; : : : ; un) and a1; : : : ; a2 2 M2such that X = fm 2 M2 jM2 j= �(x; a1; : : : ; an)g) then X \M1 is de�nableinM1 in parameters fromM1.The theorem we shall prove, is:Theorem 3.15 Every model of PA has a proper elementary conservative ex-tension.Let us see that this implies what we want:Lemma 3.16 Every conservative extension is an end-extension.35



Proof. Let M1 � M2 a conservative extension; let a 2 M1; b 2 M2 andsuppose b < a. The set fm 2 M2 jm � bg is clearly de�nable in M2 withparameter b, so fm 2M1 jm � bg is de�nable in parameters fromM1, sayfm 2M1 jm � bg = fm 2 M1 jM1 j= �(m; a1; : : : ; an)gSince a 2 M1 and b < a we haveM1 j= 8x(�(x; a1; : : : ; an) ! x � a). By theleast number principle inM1, there is a least a0 2 M1 such thatM1 j= 8x(�(x; a1; : : : ; an)! x � a0)It follows thatM1 j= �(a0; a1; : : : ; an), so a0 � b. But if a0 < b then a0 + 1 � bwhenceM1 j= �(a0 + 1; a1; : : : ; an), but of courseM1 6j= a0 + 1 � a0. Thereforewe must have a0 = b, so b 2 M1, as desired.Hence, for the record:Corollary 3.17 (MacDowell-Specker) Every model of PA has a proper ele-mentary end-extension.We now embark on the proof of theorem 3.15. We introduce the abbreviationQx'(x) for 8y9x(x > y ^ '(x)) (\there exist unboundedly many x satisfying'(x)").Lemma 3.18 Let M be a model of PA, '(x) an LPA(M)-formula such thatM j= Qx'(x), and �(x; y) an arbitrary LPA(M)-formula. Then there is anLPA(M)-formula  (x) with the properties:i) M j= Qx (x)ii) M j= 8x( (x)! '(x))iii) M j= 8y:(Qx( (x) ^ �(x; y)) ^Qx( (x) ^:�(x; y)))Proof. An equivalent for item iii) is:M j= 8y9z(8x > z( (x)! �(x; y)) _ 8x > z( (x) ! :�(x; y)))The idea of the proof is as follows. We shall construct an LPA(M)-formula�(y; x) such that(1) M j= 8x(�(0; x)$ ('(x) ^ (�(x; 0)$ Qv('(v) ^ �(v; 0))))(2) M j= 8yx(�(y + 1; x)$ �(y; x) ^ (�(x; y + 1)$ Qv(�(y; v) ^ �(v; y + 1))))For the moment, assume that �(y; x) has been de�ned. It follows, by inductionin M, that M j= 8yQx�(y; x); for Qx�(y; x) implies Qx(�(y; x) ^ �(x; y +1)) _ Qx(�(y; x) ^ :�(x; y + 1)), so Qx�(y + 1; x). We note also, that M j=8yx(�(y; x) ! '(x) ^ 8v � y�(v; x)).In order to de�ne  (x) from �(y; x) we use theorem 1.9. We write (s)iinstead of (a;m)i as in that theorem, putting s = j(a;m):(s)i = rm(j1(s); (i+ 1)j2(s) + 1)36



Let us also write x = �z'(z) for '(x) ^ 8y < x:'(y).Since 8yQx�(y; x) holds inM, we have by induction on z and theorem 1.9that the sentence8z9s((s)0 = �x�(0; x)^ 8i < z((s)i+1 = �x(x > (s)i ^ �(i+ 1; x))))is true inM; write this as 8z9s�(z; s). De�ne(3)  (x) � 9s(�(x; s) ^ 9i � x(s)i = x)Then M j= Qx (x), so statement i) of the Lemma is satis�ed. Statement ii),that 8x( (x) ! '(x)), follows from 8yx(�(y; x) ! '(x)). As to statement iii),�rst note that if w � z ^�(z; s) ^�(w; t), then 8v � w((s)v = (t)v). So for allz � y, if �(z; s) then 8w(y � w � z ! �(y; (s)w). So if �(y; s)^ (x)^x � (s)ythen �(y; x)$ �(y; (s)y ), which ensures that statement iii) holds.It remains to de�ne the formula �(y; x) and prove the equivalences (1) and(2). Again, we use the sequence coding (s)i. Let P (s; y) be the formula8u � y((s)u = 0$ Qz('(z) ^ �(z; u) ^ 8v < u(�(z; v)$ (s)v = 0)))and de�ne �(y; x) as9s(P (s; y) ^ 8u � y(�(x; u)$ (s)u = 0) ^ '(x))Since P (s; 0)$ ((s)0 = 0$ Qz('(z) ^ �(z; 0))), we have (0; x)$ '(x) ^ (�(x; 0)$ Qz('(z) ^ �(z; 0)))so (1) holds.For (2), �rst note that P (s; y)^P (t; y) implies 8u � y((s)u = 0$ (t)u = 0);from this and the de�nition of �(y; x) it follows directly that(4) P (s; y)! 8u � y8x( (u; x)$'(x) ^ 8v � u(�(x; v)$ (s)v = 0))holds. We prove the equivalence of (2):!: Suppose �(y + 1; x), soP (s; y + 1) ^ 8u � y + 1(�(x; u)$ (s)u = 0) ^ '(x)for some s. Applying (4) with y + 1 for y we have8z(�(y + 1; z)$ '(z) ^ 8v � y + 1(�(z; v) $ (s)v = 0))so '(x) ^ (�(x; y + 1) $ (s)y+1 = 0). Combining this with the de�nition ofP (s; y + 1), the fact that �(y; x) implies '(x)^ 8v � y�(v; x), and applying (4)again (inside the part Qz(: : : )), we get(5) �(y; x) ^ (�(x; y + 1)$ Qz(�(z; y + 1) ^ �(y; z))37



 : Conversely, assume (5) and P (s; y). By theorem 1.9 there is t such that8u � y((s)u = (t)u, and(t)y+1 = 0$ Qz('(z) ^ �(z; y + 1) ^ 8v � y(�(z; v) $ (s)v = 0))Then P (t; y + 1) holds. We have to show:8u � y + 1(�(x; u)$ (t)u = 0) ^ '(x)Since �(y; x) we have '(x), and for u � y this is clear, since P (s; y). Foru = y + 1 we have:�(x; y + 1) $ Qz(�(z; y + 1) ^ �(y; z))$ Qz('(z) ^ �(z; y + 1) ^ 8v � y(�(z; v) $ (t)v = 0))$ (t)y+1 = 0(the �rst equivalence by (5); the second by (4); the third by de�nition of t) Wehave proved the equivalence (2), and hence the lemma.We �nish the proof of Theorem 3.15. Fix an enumeration �0(c; ~y(0)); �1(c; ~y(1)); : : :of all formulas of LPA [ fcg (so �i(x; ~y(i)) is an LPA-formula and ~y(i) is thelist of free variables of �i(c; ~y(i))). We construct a sequence of LPA-formulas'0(x); '1(x); : : : in one free variable x, such that M j= Qx'i(x) for all i, asfollows. Put '0(x) � x = x. Given 'i(x) such that M j= Qx'i(x), we applylemma 3.18 to �nd 'i+1(x) such that:M j= Qx'i+1(x)M j= 8x('i+1(x)! 'i(x))M j= 8~y(i)9z(8x > z('i+1(x)! �i(x; ~y(i)))_8x > z('i+1(x)! :�i(x; ~y(i))))Consider the LPA(M) [ fcg-theory T given by the axiomsf�(~a) 2 LPA(M) jM j= �(~a)g[fc > a j a 2Mg [ f'i(c) j i 2 NgSince every �nite subset of this has an interpretation in M, T is consistent.Let M0 be a model of T and let K = K(M0;M[ fcg). We have M � M0as LPA(M)-structures, M � K and K � M0 as LPA(M) [ fcg-structures; itfollows thatM� K as LPA(M)-structures. Also, c 2 K nM, so K is a properelementary extension of M. We want to show that the extension M � K isconservative.Suppose s subset S � K is de�ned by S = fk jK j= �(k; b1; : : : bn)g withb1; : : : ; bn 2 K. By de�nition of K, every bi is de�ned in M0 by a formula�i(v; a1; : : : ; ak; c) with a1; : : : ; ak 2M. Now the formula9v1 � � �vn( n̂i=1 �i(vi; y1; : : : ; yk; x) ^ �(y0; v1; : : : ; vn))38



is an LPA-formula, so occurs in our enumeration as �j(x; ~y(j)), with ~y(j) =y0; : : : ; yk. We claim:d 2M\ S ,M j= 9w8x > w('j+1(x)! �j(x; d; a1; : : : ; ak)))so that M\ S is de�nable inM overM. Observe, that for d 2 M, d 2 S ifand only if K j= �(d; b1; : : : ; b1), if and only if K j= �j(c; d; a1; : : : ; ak).By construction of 'j+1, we have eitheri) M j= 9w8x > w('j+1(x)! �j(x; d; a1; : : : ; ak))or ii) M j= 9w8x > w('j+1(x)! :�j(x; d; a1; : : : ; ak))These are formulas with parameters inM, so sinceM� K, each one is satis�edin M if and only if it holds in K. So, i) is the case if and only if K j=�j(c; d; a1; : : : ; ak), if and only if d 2 S, as desired.
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4 Recursive Aspects of Models of PA4.1 Partial Truth PredicatesA truth predicate for PA is a formula Tr(y; x) such that for all formulas'(v0; : : : ; vk�1):(Tr) PA ` 8s(Tr(p'q; s)$ '((s)0; : : : ; (s)k�1))where (s)i refers, again, to sequence coding as used in the proof of lemma 3.18.Exercise 49. Arguing in a similar way as in the proof of Tarski's theorem onthe unde�nability of truth (exercise on page 20), show that a truth predicatefor PA cannot exist.However, we do have partial truth predicates: for each n � 1 we have a �n-formula Trn(y; x), such that the statement (Tr) holds for Trn and �n-formulas'. These partial truth predicates are very useful, and the rest of this sectionis devoted to their construction. In order to have a concise presentation, weshall freely employ recursion inside PA, using the fact that primitive recursivepredicates and functions are �1-representable in PA by formulas for which PAproves the recursive de�nition. We shall have to be explicit about the way wede�ne our primitive recursive functions, though, and this takes some time.We start by de�ning (in PA) a function Eval(t; s), such that for all termst(v0; : : : ; vk�1),(Eval) PA ` 8s(Eval(ptq; s) = t((s)0; : : : ; (s)k�1)For this, we need the recursion for the predicate \x is the code of a term".Proposition 4.1 There is a �1-predicate Term(x) such thatPA ` 8x(Term(x)$ x = h0i _ x = h1i_ 9i < x(x = h�2; ii_ 9uv < x(Term(u) ^Term(v) ^ x = h�3; u; vi)_ 9uv < x(Term(u) ^Term(v) ^ x = h�4; u; vi)Exercise 50. Prove Proposition 4.1.Proposition 4.2 There is a �1-predicate Val(y; x; z) such thatPA ` 8xyz(Val(y; x; z)$ [(z = 0 ^:Term(y))_ (y = h0i ^ z = 0)_ (y = h1i ^ z = 1)_ 9i < y(y = h�2; ii ^ z = (x)i)_ 9uv < y9ab(y = h�3; u; vi ^Val(u; x; a)^Val(v; x; b)^ z = a + b)_ 9uv < y9ab(y = h�4; u; vi ^Val(u; x; a)^Val(v; x; b)^ z = a�b)40



Exercise 51. Prove that the quanti�ers 9ab in the recursion for Val can in factbe bounded. Prove proposition 4.2. Prove also:PA ` 8yx9!zVal(y; x; z)In view of this we introduce a function symbol Eval, so that8yxVal(y; x;Eval(y; x))It is now easy to prove the equation (Eval), by a straightforward induction onthe term t.Exercise 52. Carry this out.Our next step is the recursion for �0Form(x): \x is the code of a �0-formula".We de�ne an abbreviation: [9vk < s:u] stands for the termh12; k; h�9; h�6; h�2; ki; si; uiiso that for a term t and formula ',[9vk < ptq:p'q] = p9vk(vk < t ^ ')qWe have a similarly de�ned abbreviation [8vk < s:u]. The following propositionshould be obvious.Proposition 4.3 There is a �1-predicate �0Form(x) such thatPA ` 8x(�0Form(x)$ 9uv < x(Term(u) ^Term(v)^(x = h�5; u; vi _ x = h�6; u; vi))_ 9uv < x(�0Form(u) ^�0Form(v)^(x = h�7; u; vi _ x = h�8; u; vi _ x = h10; ui))_ 9uks < x(�0Form(u) ^Term(s) ^ x = [9vk < s:u])_ 9uks < x(�0Form(u) ^Term(s) ^ x = [8vk < s:u]))Proposition 4.4 There is a�1-predicate Tr0(y; x) such that for all�0-formulas'(v0; : : : ; vk�1),(Tr0) PA ` 8s(Tr0(p'q; s)$ '((s)0; : : : ; (s)k�1))Proof. The function V , which for codes of formulas gives the largest indexof a variable which occurs in the formula, is of course primitive recursive andprovably recursive in PA. Sloppily, we de�ne:V (y) = � 0 if :Form(y)k if Form(y) ^ k = maxfl j vl occurs in yg41



By a recursion analogous to the ones we have already seen, there is a �1-predicate Tr0(y; x) such thatPA ` 8yx[Tr0(y; x)$�0Form(y)^[9uv < y(y = h�5; u; vi ^ Eval(u; x) = Eval(v; x))_ 9uv < y(y = h�6; u; vi ^ Eval(u; x) < Eval(v; x))_ 9uv < y(y = h�7; u; vi ^Tr0(u; x)^Tr0(v; x))_ 9uv < y(y = h�8; u; vi ^ (Tr0(u; x)_Tr0(v; x)))_ 9u < y(y = h10; ui ^ :Tr0(u; x))_ 9uks < y(y = [9vk < s:u] ^ 9i < Eval(s; x)9w(8j � V (y)(j 6= k ! (w)j = (x)j) ^ (w)k = i ^Tr0(u;w)))_ 9uks < y(y = [8vk < s:u] ^ 8i < Eval(s; x)9w(8j � V (y)(j 6= k ! (w)j = (x)j) ^ (w)k = i ^Tr0(u;w))) ]]Exercise 53. Prove thatPA ` 8xiku9w((w)i = u ^ 8j < k(j 6= i! (w)j = (x)j))Prove also, thatPA ` 8yxv(8i � V (y)((x)i = (v)i)! (Tr0(y; x)$ Tr0(y; v)))Using this, we see that in the recursion for Tr0, the quanti�er 9w might aswell have been 8w. The rest of the quanti�ers are bounded, so Tr0 is �1. Thestatement (Tr0) follows by induction on '.In the �nal inductive de�nition of Trn, we de�ne simultaneously formulas Trnand Trcn that work for �n and �n-formulas, respectively.First, the recursions for the predicates saying that x codes a �n or �n-formula. For clarity, we write [9vk:u] for h12; k; ui and [8vk:u] for h11; k; ui.We have, for each n, �1-predicates �nForm(x) and �nForm(x): let�0Form(x) � �0Form(x) � �0Form(x)If �nForm(x) and �nForm(x) are de�ned, de�ne �n+1Form(x) and �n+1Form(x)recursively, so thatPA ` �n+1Form(x)$ �nForm(x)_9ku < x(x = [9vk:u]^�n+1Form(u))PA ` �n+1Form(x)$ �nForm(x)_9ku < x(x = [8vk:u]^�n+1Form(u))We now come to the �nal de�nition of the predicates Trn and Trcn. For n = 0,we let Trc0 � Tr0, which we have already de�ned. In the de�nition of Trn+1 andTrcn+1 we use the function V (y) de�ned in the proof of proposition 4.4.Let Fn+1(�; j; y) be the formula�nForm((�)0) ^ 8i < j9k < (�)i+1((�)i+1 = [9vk:(�)i]) ^ (�)j = y42



From the recursion for �n+1Form(y) one proves by well-founded induction thatPA ` 8y(�n+1Form(y) $ 9�9jFn+1(�; j; y))Let Trn+1(y; x) be the formula9�j(Fn+1(�; j; y) ^ 9w(Trcn((�)0; w)^8i � V (y)(8l < j((�)l+1 6= [9vi:(�)l])! (w)i = (x)i)))Similarly, let Gn+1(�; j; y) be the formula�nForm((�)0) ^ 8i < j9k < (�)i+1((�)i+1 = [8vk:(�)i]) ^ (�)j = yand de�ne Trcn+1(y; x) as�n+1Form(y) ^ 8�8j(Gn+1(�; j; y)!8w((8i � V (y)(8l < j((�)l+1 6= [8vi:(�)l])! (w)i = (x)i)!Trn((�)0; w)))Exercise 54. Check that the predicates �n+1Form, �n+1Form, Fn+1 andGn+1 are �1; hence by induction on n, that Trn is �n and Trcn is �n. Convinceyourself that these formulas have the claimed property w.r.t. �n-formulas and�n-formulas, respectively.Our �rst application of the partial truth predicates Trn is, that \the arithmeticalhierarchy does not collapse". That is, for each n there is a �n-formula which isnot equivalent to a �n-formula.Proposition 4.5 (Kleene) The formula Trn is, in PA, not equivalent to a�n-formula.Proof. This is similar to the Hierarchy Theorem in Recursion Theory. It iseasy to de�ne, in PA, a provably recursive function [�] such that ([x])0 = x.Now if Trn were equivalent to a �n-formula, there would be a �n-formula�(v0) such that PA ` 8x(�(x)$ :Tr(x; [x]))It follows, that PA ` �[p�q=v0]$ Trn(p�q; [p�q])$ :�[p�q=v0]which contradicts the consistency of PA.Exercise 55. Show that in fact, for no modelM of PA, Trn is, inM, equivalentto a �n-formula. 43



4.2 PA is not �nitely axiomatizedIn this section we apply the partial truth predicates Trn to show that PA, or infact every consistent extension of PA, is not �nitely axiomatized.LetM be a model of PA and A �M. By Kn(M;A) we mean the subset ofM consisting of elements which are �n-de�nable inM in parameters from A:those a 2 M such that for some �n-formula �(x; y1; : : : ; yk) and a1; : : : ; ak 2 A,M j= 8x(�(x; a1; : : : ; ak)$ x = a)Exercise 56. Show that for n > 0, Kn(M;A) is a substructure of M whichcontains A.We have the following analogue of Theorem 3.14.Proposition 4.6 Let M be a model of PA and A � M. Then for all n � 1,Kn(M;A) ��n M as LPA(A)-structures.Proof. We write K for Kn(M;A). Let us �rst show that K ��0 M. SinceK is a substructure ofM, equations between terms in parameters from K willhold in K if and only if they hold inM. Furthermore, if c1; c2 2 K and c1 < c2inM, and �1(x;~a) and �2(y;~b) are �n-formulas de�ning c1 and c2 in parametersfrom A, the formula9x9y(�1(x;~a) ^ �2(y;~b) ^ x+ (z + 1) = y)is �n and de�nes a unique element c3 of K for which c1 + (c3 + 1) = c2; soc1 < c2 in K. The converse is easy, so the equivalence K j= ',M j= ' holdsfor all quanti�er-free sentences ' with parameters from K. Now suppose theequivalence holds for ' 2 �0, and consider 9x < t'. IfM j= 9x < t(~a)'(x;~a)then by the least number principle inM,M j= 9x(x < t(~a) ^'(x;~a) ^ 8y < x:'(y;~a))This formula contains parameters fromK. Replacing those by their �n-de�nitionswe get a �n-formula with parameters in A, de�ning an element c of K; thenK j= c < t(~a) ^ '(c;~a) ^ 8y < c:'(y;~a)by the assumption on ' and what we have proved about quanti�er-free formulas,so K j= 9x < t(~a)'(x;~a). The converse is, again, easy, so K ��0 M.We now prove for 0 � k < n that K ��k M implies K ��k+1 M. Sincethe bijection jm :Mm !M is �0-de�nable and has �0-de�nable inverses jmi(1 � i � m), it restricts to a bijection Km ! K; hence for a �k+1-formula 'we may assume that ' � 9y with  2 �k. If M j= ' then again by LNP,M j= 9y( (y) ^ 8w < y: (w)). This formula contains parameters from K;replacing those by their �n-de�nitions we getM j= 9y9v1 � � �vr( r̂i=1 �j(vj) ^  (y;~v) ^ 8w < y: (w;~v))44



The part following 9y is �n in parameters from A so de�nes an element c ofK. Since K ��k M, K j=  (c), and hence K j= '. Using proposition 3.8, weconclude that K ��k+1 M, which concludes the induction step and thereforethe proof.Proposition 4.7 LetM be a model of PA, A a �nite subset ofM and n � 1.If Kn(M;A) contains nonstandard elements, it is not a model of PA.Proof. Since A is �nite, A = fa1; : : : ; akg for some k. There is, in K =Kn(M;A), a function c 7! [~a; c] where [~a; c] is such that8i < k(([~a; c])i = ai+1 ^ ([~a; c])k = c)(This is �1-de�nable inM, and K ��n M) Since every c 2 K is �n-de�nablein a1; : : : ; ak, there is for each c 2 K an e 2 IN such thatM j= Trn(e; [~a; c])^ 8y(Trn(e; [~a; y])! y = c)This is a conjunction of a �n and a �n-formula, so it holds in K too. Therefore,for each nonstandard d 2 K we haveK j= 8c9e < d(Trn(e; [~a; c])^ 8y(Trn(e; [~a; y])! y = c))Were K a model of PA, it would satisfy the Underspill Principle; then therewould be a standard d for which this formula would hold. But it is not hard tosee that in that case, K would be �nite. This is impossible for models of PA.Exercise 57. Show that even K1(M; ;) may contain nonstandard elements.Theorem 4.8 (Ryll-Nardzewski) No consistent extension of PA is �nitelyaxiomatized.Proof. Suppose T is a �nitely axiomatized, consistent extension of PA. LetMbe a nonstandard model of T and pick a 2 M nonstandard. Since T is �nitelyaxiomatized, all axioms of T are �n for some n. But then Kn(M; fag) ��n M,so Kn(M; fag), containing the nonstandard element a, is a model of T . Thiscontradicts proposition 4.7.4.3 Coded SetsAn important tool for the study of models of PA is the theory of coded sets.LetM be a model of PA. A subset S � IN is said to be coded inM if there isc 2M such that S = fn 2 IN jM j= (c)n = 0gFor each S � IN, let pS(x) be the type f(x)i = 0 j i 2 Sg [ f(x)i 6= 0 j i 62 Sg. SoS is coded inM if and only ifM realizes pS .We call fS � IN jS is coded inMg the standard system ofM, and denoteit by SSy(M).Clearly, for the standard model N , SSy(N ) consists of precisely the �nitesubsets of IN, but for nonstandard modelsM, SSy(M) turns out to have inter-esting structure. 45



Proposition 4.9 For nonstandardM, SSy(M) contains every recursive subsetof IN.Proof. Let S � IN be recursive. By theorem 1.14, there is a �1-formula �(x)such that: n 2 S ) PA ` �(n)n 62 S ) PA ` :�(n)InM, the formula 9x8i < y((x)i = 0$ �(i)) is true for every standard y. ByOverspill, there is a nonstandard c for which it holds. Since M is a model ofPA, we have n 2 S ,M j= (c)n = 0The following converse shows that the property of being coded in every non-standard model is in fact equivalent to being recursive:Proposition 4.10 For every nonrecursive set S there is a nonstandard modelM in which S is not coded.Proof. Let T be the theory PA [ fc > n jn 2 INg. We wish to �nd a model ofT which omits pS . By the Omitting Types theorem, it su�ces to show that Tlocally omits pS . Suppose for the contrary that '(c; x) is a formula, consistentwith T , such that for all i 2 IN:i 2 S ) T ` 8x('(c; x)! (x)i = 0)i 62 S ) T ` 8x('(c; x)! (x)i 6= 0)It follows that, in fact,i 2 S , T ` 8x('(c; x)! (x)i = 0)i 62 S , T ` 8x('(c; x)! (x)i 6= 0)since '(c; x) is consistent with T . Therefore to decide whether i 2 S, we canlook for the shortest proof in T (which is a recursively axiomatized theory) ofeither 8x('(c; x)! (x)i = 0) or 8x('(c; x)! (x)i 6= 0). So S is recursive afterall.Our next theorem says that no standard system can consist of exactly the re-cursive sets.Proposition 4.11 For every nonstandard modelM there is a nonrecursive setwhich is coded inM.Proof. By a similar Overspill argument as in the proof of 4.9, there is a non-standard c 2M such that for all i 2 IN,M j= (c)i = 0$ �1Form(c) ^ V (c) = 0 ^Trc1(i; [0])46



so the set S coded by c is the set of codes of �1-formulas '(v0) with at most v0free, such that '(0) is true inM. Were S recursive, the theoryT = PA [ f' j p'q 2 Sg [ f:' j' 2 �1 ^ V (p'q) = 0 ^ p'q 62 Sgwould be a consistent, recursively axiomatized extension of PA and by G�odel'sFirst Incompleteness Theorem there is a �1-sentence  which is independent ofT ; but this is impossible since either p q 2 S or : 2 T .The following proposition characterizes SSy(M) in terms of the M-de�nablesubsets of IN:Proposition 4.12 LetM be a nonstandard model of PA. Then S 2 SSy(M) ifand only if for some formula '(x; y1; : : : ; yk) and parameters a1; : : : ; ak 2M:S = fn 2 IN jM j= '(n; a1; : : : ; ak)gProof. Clearly, if S is coded by c 2 M, the formula (c)x = 0 de�nes S in theparameter c. The converse uses a similar Overspill argument as in the proof ofproposition 4.9. For any standard x,M j= 9y8i < x((y)i = 0$ '(i; a1; : : : ; ak))so by Overspill this holds for some nonstandard b 2 M; but then for n 2 INwe have M j= '(n; a1; : : : ; ak) if and only if M j= (b)n = 0, so the set fn 2IN jM j= '(n; a1; : : : ; ak)g is coded inM.Exercise 58.a) IfM1 ��0 M2 then SSy(M1) � SSy(M2);b) ifM1 �eM2 andM1 is nonstandard, then SSy(M1) = SSy(M2).Exercise 59. LetM be a nonstandard model of PA. Prove that if S 2 SSy(M),there is a 2 M such that n 2 S i� M j= pnja, where pn is the n-th primenumber.The following famous theorem applies proposition 4.11. To some extent, itexplains why it is hard to give \concrete" nonstandard models of PA. It assertsthat \nonstandard models cannot be recursive". A countable model of PAis called recursive if it is of the form (IN;�;
;�; n0; n1) with �;
 recursivefunctions and � a recursive relation.Theorem 4.13 (Tennenbaum) No countable nonstandard model of PA is re-cursive.Proof. Let M = (IN;�;
;�; n0; n1) be a countable nonstandard model. Weshow that � is not recursive.By proposition 4.11, M codes a nonrecursive set S; and by the exerciseabove we may assume that for some a 2 M, S = fn 2 IN jM j= pnjag. Thefunction n 7! pn is recursive, and soM j= p�n = pn, which isn1 � � � � � n1| {z }pn times47



IfM is a model of PA, it satis�es division with remainder, so for each n thereare k 2 IN and i < pn, such thata = k � � � � � k| {z }pn times �n1 � � � � � n1| {z }i timesWere � recursive, we could, recursively in n, �nd k and i (simply by enumeratingand computing the terms in question) and hence, by checking whether i = 0,decide the question n 2 S?, so S is recursive; contradiction.Exercise 60. If a 2 M is such that S = fn 2 IN jM j= pnjag, then b = 2asatis�es S = fn 2 IN jM j= 9x(xpn = b)g. Use this for an alternative proof oftheorem 4.13, now showing that 
 is not recursive.Since the proof of theorem 4.13 (and the exercise you have just done) in factshows that for any countable model M = (IN;�;
;�; n0; n1), every set S 2SSy(M) is recursive in each of �;
, we have the following corollary, stated asexercise:Exercise 61. LetM = (IN;�;
;�; n0; n1) be a countable nonstandard modelof PA. If N �M, then neither of �;
 is arithmetical.4.4 Scott sets; Theorems of Scott and FriedmanA Scott set (or completion closed, or c-closed set) is a subset X of P(IN) suchthat the following conditions hold:i) ; 2 X and X is closed under binary intersections and complements;ii) X is closed under `recursive in': if Y 2 X and X �T Y , then X 2 X ;iii) if X contains an in�nite binary tree T , then X contains an in�nite pathin T .To explain requirement iii): here we consider every natural number as the codeof a unique �nite sequence of natural numbers, as in section 2.1. We write x v yif lh(x) � lh(y) ^ 8i < lh(x)((x)i = (y)i). A subset T of IN is a binary tree if8x 2 T8i < lh(x)((x)i � 1) and 8xy(y 2 T ^ x v y ! x 2 T ).X is a branch of T if X is a subtree of T and 8xy 2 X(x v y _ y v x).Exercise 62. Show the following consequence of the de�nition of Scott sets:if X1; : : : ; Xn are elements of a Scott set X and Y is recursive in X1; : : : ; Xn,then Y 2 X .K�onig's Lemma says that every in�nite binary tree has an in�nite branch. Onede�nes an in�nite sequence of elements xn of T , such that lh(xn) = n and fy 2T jxn � yg is in�nite: x0 = hi, and if xn is de�ned satisfying the requirements,then let xn+1 = xn � h0i if fy 2 T jxn � h0i v yg is in�nite; otherwise, letxn+1 = xn � h1i.This result fails if one relativizes everything to recursive sets:48



Lemma 4.14 (Kleene) There is an in�nite, primitive recursive binary treewhich does not have a recursive in�nite branch. Therefore every Scott set con-tains nonrecursive sets.Proof. Recursion theory tells us that there are in�nite partial recursive func-tions, taking values in f0; 1g, which cannot be extended to total recursive func-tions (e.g., the function x 7! sg(fxg(x)) is such a function). Let f be the codeof such a function and letT = fx j 8i < lh(x)((x)i � 1 ^ 8u < lh(x)(T (f; i; u)! U (u) = (x)i))gT is primitive recursive and in�nite, since the function coded by f is in�nite; butevery in�nite branch through T is a total function IN ! f0; 1g which extendsthe function coded by f , and is therefore nonrecursive.T is in every Scott set, because T �T ;, so by requirement iii) of Scott sets,every Scott set contains a nonrecursive set.Scott sets are intimately related to standard systems of nonstandard models ofPA.Proposition 4.15 Let M be a nonstandard model of PA. Then SSy(M) is aScott set.Proof. We check the conditions for a Scott set.i): Since PA ` 8x9z8i < x((z)i 6= 0), there is d 2M such thatM j= (d)i 6= 0for all standard i; so d codes the empty set.If b codes S and c codes T then there is (using Overspill) a d such that for allstandard i,M j= (d)i = (b)2i + (c)2i ; so d codes S \ T . The case of complementis left to you.ii): Suppose Y is coded by b and X �T Y . One can show, in a similar way aswe showed the representability of recursive functions, that there is a �1-formula'(v0; v1) such that X = fn 2 IN jM j= '(n; b)gSo X is parametrically de�nable inM, hence in SSy(M) by 4.12.iii): Suppose T is an in�nite binary tree, coded by b 2 M. Then for allstandard m,M j= 9x8i < m(lh((x)i) = i ^ 8j < i((x)j v (x)i) ^ (b)(x)i = 0)(I apologize for the use of the same notation for two di�erent ways of coding,in the same formula!)By Overspill, there is a nonstandard m satisfying this formula; but then forany x doing it for m, x codes an in�nite path in T .For the following lemma, we need the notion of a recursive language. A �rstorder language L is recursive if there are recursive subsets RL, FL and CL ofIN, bijections between RL and the set of relation symbols of L, FL and theset of function symbols of L, and CL and the set of constants of L, such that49



the functions arR : RL ! IN and arF : FL ! IN, which give, modulo thesebijections, the arity of a relation and function symbol, are recursive.Don't get confused: all interesting languages are recursive. The point is,that we have, just as for LPA, an e�ective coding of all L-formulas, sentences,proofs : : :Let L be a recursive language. By this e�ective coding, we can say thatX � IN codes an L-theory T : for some axiomatization A of T , X = fp'q j' 2Ag. Suppose X codes the theory T . We have, just as is section 2.2, a predicatePrfT (x; y): x codes a proof of the formula coded by y, and all undischargedassumptions of this proof have codes in X. Clearly, the predicate PrfT (x; y) isrecursive in X.Lemma 4.16 Let T be a consistent theory in a recursive language L, and Xa Scott set. If T is coded by some X 2 X , then there is a complete consistentextension of T coded by some X 0 2 X .Proof. Fix an e�ective enumeration �0; �1; : : : of all L-sentences.With every �nite 01-sequence x we associate a sentence �x: if x = hi then�x = 9v(v = v), and if lh(x) = n + 1 then �x = �x0 ^ �n if x = x0 � h0i, and�x = �x0 ^ :�n if x = x0 � h1i. The map x 7! p�xq is clearly recursive. Let Ybe the binary treefx j 8i < lh(x)((x)i � 1) ^ 8k < lh(x):PrfT (k; p:�xq)gSince T is consistent, Y is in�nite; moreover, Y is recursive in X. So Y 2X . Since X is a Scott set, X contains an in�nite path P through Y . Butthen f�x jx 2 Pg axiomatizes a complete consistent extension of T , and X 0 =fp�xq jx 2 Pg is recursive in P , so an element of X .Theorem 4.17 (Scott) Let X be a countable Scott set. Then X = SSy(M)for some modelM of PA.Proof. Enumerate X as X0; X1; : : :Fix a set C = fc0; c1; : : :g of new constants. Let Ln be the language LPA [fc0; : : : ; cn�1g. Every Ln is recursive. Let L = Sn Ln. We build a completeL-theory T in stages.Stage 0. Since LPA is recursive and PA a recursively axiomatized theory, hencecoded by an element of X , we apply Lemma 4.16 to pick a complete consistentextension T0 of PA in LPA, which is coded by some element of X .Stage 2n+ 1. LetT2n+1 = T2n [ f(cn) �m = 0 jm 2 Xng [ f(cn) �m 6= 0 jm 62 XngSo T2n+1 makes sure that cn codes Xn. Note that T2n+1 is recursive in T2n andXn, hence in X .Stage 2n+2. Since T2n+1 is coded in X , we apply Lemma 4.16 again, to obtaina complete consistent extension of T2n+1 in Ln+1, which is coded in X . We letthis be T2n+2. 50



Let T = Sn Tn. Then T is consistent since every Tn is, and T is a complete L-theory since every L-sentence is already an Ln-sentence for some n, so provableor refutable in T2n+2.Let M be a model of T and A � M be the set of interpretations of theconstants from C. Let K = K(M;A). K is a model of T , hence of PA, and weclaim that X = SSy(K).Since cMn 2 K and cMn codes Xn, clearly X � SSy(K). For the converse,using 4.12, let X 2 SSy(K) so for some '(x; k1; : : : ; kr),X = fn 2 IN j K j= '(�n; k1; : : : ; kr)gHere the k1; : : : ; kr are parameters from K, so they are M-de�nable in ele-ments from A. Replacing the ki by their de�nitions and reminding ourselvesthat M models the complete theory T , we see that there is an L-formula'�(v; c0; : : : ; cm) such thatX = fn 2 IN jT ` '�(�n; c0; : : : ; cm)gBut T ` '�(�n; c0; : : : ; cm) if and only if T2m+2 ` '�(�n; c0; : : : ; cm). We concludethat X is recursive in T2m+2 (not just r.e., since T2m+2 is complete), which iscoded in X ; hence X 2 X since X is a Scott set.It is possible to strengthen theorem 4.17 to Scott sets of cardinality at most @1.The consequence is:Corollary 4.18 If the Continuum Hypothesis holds, then for every X � P(IN):X is a Scott set if and only if X = SSy(M) for some nonstandard modelM ofPA.But as far as I know, it is still an open problem whether the Continuum Hy-pothesis can be eliminated from this result.The following lemma is another application of the partial truth predicates Trn.We shall need it for the proof of Friedman's Theorem that every countablenonstandard model of PA is isomorphic to a proper initial segment of itself.But the Lemma is interesting in its own right. It states a saturation propertyfor nonstandard models of PA.Lemma 4.19 LetM be a nonstandard model of PA.a) For any n-tuple a0; : : : ; an�1 of elements ofM, the setfp�(v0; : : : ; vn�1)q j � 2 �k;M j= �(a0; : : : ; an�1)gis in SSy(M);b) for any type �(v0; : : : ; vn+m�1) consisting of �k-formulas, and any m-tuple b0; : : : ; bm�1 2M, if fp�q j � 2 �g 2 SSy(M) and the typef�(v0; : : : ; vn�1; b0; : : : ; bm�1) j � 2 �gis consistent withM, it is realized inM.51



The same results hold with �k instead of �k.Proof. a) We have for �(v0; : : : ; vn�1) 2 �k:M j= �(a0; : : : ; an�1),M j= Trk(p�q; [a0; : : : ; an�1])so the statement follows from proposition 4.12.b) Let d 2 M code the set fp�q j � 2 �g. Let x 7! [x;~b] be a de�nablefunction such that8i < n(([x;~b])i = (x)i) ^ 8i < n+m(n � i! ([x;~b])i = bi�n)Then if f�(v0; : : : ; vn�1; b0; : : : ; bm�1) j � 2 �g is consistent with M, we havefor each standard number y, that9x8i < y((d)i = 0! Trk(i; [x;~b]))is true inM. By Overspill, there is a nonstandard y for which this sentence istrue. Suppose x 2 M satis�es this for nonstandard y. Then for ai = (x)i wehave M j= �(a0; : : : ; an�1; b0; : : : ; bm�1)for all � 2 �.The statements for �k follow simply from replacing Trk by Trck.Theorem 4.20 LetM;M0 be countable nonstandard models of PA. Then thefollowing two statements are equivalent:i) M is isomorphic to an initial segment ofM0ii) SSy(M) = SSy(M0) and Th�1(M) � Th�1(M0)where Th�1(M) is the set of �1-sentences true inM.Proof. We do the implication ii)) i), leaving the other direction as an exercise.Suppose SSy(M) = SSy(M0) and Th�1(M) � Th�1(M0). We are goingto construct an isomorphism between M and an initial segment of M0 by aback-and-forth construction.Fix enumerations � = (a00; a01; : : : ) ofM and � = (b00; b01; : : : ) ofM0. At eachstage n, we assume we have de�ned a partial embeddingfa0; : : : ; ain�1g ! fb0; : : : ; bin�1gofM intoM0, satisfying(�) Th�1(M; a0; : : : ; ain�1) � Th(M0; b0; : : : ; bin�1)For n = 0 we let i0 = 0, and we use the assumption that Th�1(M) � Th�1(M0).Now suppose (a0; : : : ; ain�1)! (b0; : : : ; bin�1) is de�ned, satisfying (�). Letain be the �rst a0 in the enumeration � that is not among a0; : : : ; ain�1, andconsider the type�n = f�(vin ; v0; : : : ; vin�1) 2 �1 jM j= �(ain ; a0; : : : ; ain�1)g52



By Lemma 4.19 a), �n is coded in SSy(M), hence also in SSy(M0). Moreover,the type f�(vin ; b0; : : : ; bin�1) j � 2 �ng is consistent withM0 since for any �nite�1; : : : ; �r 2 �n we have9vin( r̂j=1 �j(vin ; a0; : : : ; ain�1)) 2 Th�1(M; a0; : : : ; ain�1)so by (�), 9vin (Vrj=1 �j(vin ; b0; : : : ; bin�1)) holds inM0.By Lemma 4.19 b), f�(vin ; b0; : : : ; bin�1) j � 2 �ng is realized by some bin 2M0. Clearly now,Th�1(M; a0; : : : ; ain) � Th�1(M0; b0; : : : ; bin)Now, if there is no b 2 M0 n fb0; : : : ; bing such that b < bk for some k � in, weput in+1 = in + 1 and we proceed to the next stage.Otherwise, we pick the �rst such b in the enumeration �, �x k, and considerthe type �n = f�(vin+1; v0; : : : ; vin) 2 �1 jM0 j= �(b; b0; : : : ; bin)gAgain, �n is coded in SSy(M0), hence in SSy(M).Moreover, f�(vin+1; a0; : : : ; ain) j � 2 �ng is a �1-type consistent withM forthe following reason: for any �nite �1; : : : ; �r 2 �1 we haveM0 j= 9vin+1 < bk r̂j+1 �j(vin+1; b0; : : : ; bin)which is a �1-sentence, and since Th�1(M; a0; : : : ; ain) � Th�1(M0; b0; : : : ; bin)we have Th�1(M0; b0; : : : ; bin) � Th�1(M; a0; : : : ; ain) (check!). SoM j= 9vin+1 < ak r̂j+1 �j(vin+1; a0; : : : ; ain)By Lemma 4.19 b), let a 2 M realize f�(vin+1; a0; : : : ; ain) j � 2 �ng.Put ain+1 = a, bin+1 = b. Check thatTh�1(M; a0; : : : ; ain+1) � Th�1(M0; b0; : : : ; bin+1)We put in+1 = in + 2, and proceed to the next stage.The second part of each stage (when applied) will eventually make sure thatwe map onto an initial segment ofM0.Exercise 63. Prove yourself the direction i)) ii) of Theorem 4.20.Let us see how Theorem 4.20 easily implies (a simple form of) Friedman'sTheorem:Theorem 4.21 (Friedman) LetM be a countable nonstandard model of PA.Then M is isomorphic to a propser initial segment of itself.53



Proof. By the MacDowell-Specker Theorem, or rather the simple OmittingTypes argument at the beginning of section 3.5 (bearing in mind that the Omit-ting Types Theorem produces countable models), M has a countable properelementary end-extensionM0.We have seen that forM�eM0, SSy(M) = SSy(M0). Also, sinceM�M0,Th�1(M0) � Th�1(M). By Theorem 4.20, M0 is isomorphic to an initialsegment of M. But M was also a proper initial segment of M0. Composingthe two embeddings, we obtain the statement of the theorem.
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AppendixIn this chapter I put two, unrelated, results which I �nd interesting. One isSkolem's original construction of a nonstandard model for PA; the other is atheorem about the residue rings of in�nite (nonstandard) primes in nonstandardmodels.Skolem's ConstructionUp to now, we haven't really seen a concrete nonstandard model of PA: all ourexistence theorems rely on the Completeness Theorem (or ultraproducts). Inthe �rst paper where nonstandard models were introduced, by Skolem in 1934,he gave a construction which is rather di�erent.Let F be the set of arithmetically de�nable functions from IN to IN. Usingthe denumerability of F , we construct a function G : IN ! IN such that for allf; g 2 F :f(G(x)) < g(G(x)) a.e., or f(G(x)) = g(G(x)) a.e., or f(G(x)) > g(G(x)) a.e.where \a.e." means almost everywhere, i.e. from a certain n 2 IN on.The function G is de�ned as follows: enumerate F as f0; f1; : : : We de�ne asequence A0 � A1 � � � � of in�nite subsets of IN, with the property that for allk; l � n, (�) 8x 2 An(fk(x) < fl(x)) or 8x 2 An(fk(x) = fl(x))or 8x 2 An(fk(x) > fl(x))Then we can de�ne G as follows: let G(0) be the least element of A0, andG(n+ 1) the least element of An+1 which is above G(n).Put A0 = IN. Suppose An is de�ned satisfying (�), and in�nite. The re-strictions of f0; : : : ; fn to An form, by pointwise ordering, a linearly ordered setg0 < � � � < gk for some k � n. ThenAn = Ski=0fx 2 An j fn+1(x) = gi(x)g[ fx 2 An j fn+1(x) < g0(x)g[Sk�1i=0 fx 2 An j gi(x) < fn+1(x) < gi+1(x)g[ fx 2 An j gk(x) < fn+1(x)gThis is a �nite union of sets, so since An is in�nite, one of these sets is; pickan in�nite member of this union, and call it An+1. Clearly, An+1 satis�es (�).This completes the de�nition of the sets An, and hence the de�nition of G.Now de�ne an equivalence relation on F : f � g i� f(G(x)) = g(G(x)) a.e.LetM = F= �. The operations of pointwise addition and multiplication on Fare well-de�ned onM too. Letting 0M = [�x:0], 1M = [�x:1] (we write [f ] forthe �-class of f), and [f ] < [g] i� f(G(x)) < g(G(x)) a.e. (this is well-de�nedon equivalence classes), we have thatM is an LPA-structure.Theorem 4.22 M is a proper elementary extension of N .55



Proof. One proves by induction, that for formulas '(v1; : : : ; vk) and[f1]; : : : ; [fk] 2M,M j= '([f1]; : : : ; [fk]) if and only if N j= '(f1(G(n)); : : : ; fk(G(n))) a.e.This is immediate for atomic formulas, and the induction steps for the propo-sitional connectives are easy. The step for 9 goes as follows:If M j= 9y'([f1]; : : : ; [fk]) so for some g 2 F , M j= '([g]; [f1]; : : : ; [fk]),then by induction hypothesis N j= '(g(G(n)); f1(G(n)); : : : ; fk(G(n))) a.e. socertainly N j= 9y'(f1(G(n)); : : : ; fk(G(n))) a.e.For the converse, if N j= 9y'(f1(G(n)); : : : ; fk(G(n))) a.e., let h be thearithmetically de�nable function such that h(m) is the least a satisfying'(a; f1(m); : : : ; fk(m)) (and put h(m) = 0 if no such a exists). By assumptionthen, N j= '(h(G(n)); f1(G(n)); : : : ; fk(G(n))) a.e.so by induction hypothesisM j= '([h]; [f1]; : : : ; [fk]) whenceM j= 9y'([f1]; : : : ; [fk]).Now if we have parameters from N , andM j= 9y'(n1; : : : ; nk), then N j='(m;n1; : : : ; nk) for some n 2 IN. So M j= '(m;n1; : : : ; nk) (remember thatnM = [�x:n]). By the Tarski-Vaught test,M is an elementary extension of N .Residue Fields in Nonstandard ModelsHere we treat an easy fact which belongs to the folklore of the subject: it wasnever written down by anyone, but certainly known. Nevertheless, I feel it isinteresting enough to include it here.LetM be a nonstandard model of PA, and p a nonstandard prime numberinM. By Euclidean division and B�ezout's Theorem inM, the set of elements< p in M has the structure of a �eld, which we denote by Fp . Since p isnonstandard, none of the elements 1; 1+1; 1+ 1+ 1; : : : is divisible by p, so thecharacteristic of Fp is 0 and Fp contains the �eld Q of rational numbers as asub�eld.What is the relation between Q and Fp? We recall a few de�nitions fromelementary algebra. We say for �elds K � L that L is algebraic over K if foreach x 2 L there is a polynomial P 2 K[X] such that P (x) = 0. Otherwise,L is transcendent over K. A transcendence basis of L over K is a minimalsubset A of L such that L is algebraic over K(A) (the least sub�eld of L whichcontains K and A). The transcendence degree of L over K is the cardinality ofa transcendence basis of L over K. We can now state:Theorem 4.23 LetM be a nonstandard model of PA, and p 2 M a nonstan-dard prime number. Then Fp is a �eld of in�nite transcendence degree overQ.Proof. We show that for any �nite number of elements x1; : : : ; xk of Fp , Fp isnot algebraic over Q(x1; : : : ; xk). Clearly, and element x of Fp satis�es P (x) = 056



in Fp for a polynomial P with coe�cients in Q(x1; : : : ; xk), if and only if thereare polynomials P1; P2 with coe�cients in IN[x1; : : : ; xk] (the set of polynomialsin x1; : : : ; xk with coe�cients in IN) such that P1(x) = P2(x) in Fp, that is:LPA-terms t1; t2 in parameters x1; : : : ; xk and free variable v, such thatM j= rm(t1(x1; : : : ; xk; x); p) = rm(t2(x1; : : : ; xk; x); p)Let � (w1; : : : ; wk; v; u) be the type of all formulas of the form:rm(t1(~w; v); u) = rm(t2(~w; v); u)! 8z < u(rm(t1(~w; z); u) = rm(t2(~w; z); u))for all pairs (t1; t2) of LPA-terms in variables w1; : : : ; wk; v.The set of codes of elements of � is recursive, hence, by 4.9, in SSy(M).Also, � consists of �0-formulas. And the type � (x1; : : : ; xk; v; p) is consistentwith M since every polynomial can have at most �nitely many roots, unlessit is the zero polynomial, and Fp is in�nite. So � (x1; : : : ; xk; v; p) is �nitelysatis�ed in M. By Lemma 4.19, � (x1; : : : ; xk; v; p) is realized by an elementa 2 M. One sees that rm(a; p) is an element of Fp which is not a zero of anontrivial polynomial with coe�cients in Q(x1; : : : ; xk). This holds for any k,so the theorem is proved.
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Miscellaneous ExercisesExercise 64. The scheme of strong �0-collection is the scheme:8a; z9t8x � z8y(�(x; y; a) ! 9w � t�(x;w; a))where � is a �0-formula. Let S be the theory PA� together with the scheme ofstrong �0-collection. Prove that in S, the scheme of induction for �1-formulasis provable.Exercise 65. Give a formal proof in PA of the following sentence:8xy(x < y ^ gcd(x; y) > 1! 9vq(1 < v < y ^ v�x = q�y))Exercise 66. For this exercise, we assume that we have symbols for the ma-nipulation of (coded) sequences in PA: we have functions lh(x) (the length ofthe sequence coded by x), hxi (the sequence with one element x), (x)i (thei-th element of the sequence coded by x), hi (the empty sequence), and x � y(concatenation of sequences).Let R(x) be the formulax = hi _ (lh(x) < ((x)0)2 + 1)Prove that PA proves the following principle of well-founded induction: for eachformula '(v),PA ` 8x(R(x) ^ 8y(R(x � hyi) ! '(x � hyi)) ! '(x))! 8x(R(x)! '(x))Exercise 67. Recall that we abbreviate �' for 9xPrf(x; p'q). The following\derivability conditions" hold:D1 PA ` ') PA ` �'D2 PA ` �' ^�('!  )! � D3 PA ` �'! ��'i) Use these rules to show that PA ` �(' ^  ) $ �' ^� ;ii) Show that PA does not prove the implication(�'! � ) ! �('!  )for all ' and  [Hint: you may assume that PA 6` ��?. Use D1{D3 andapply the Diagonalization Lemma].Exercise 68. Let ' be a sentence in the language of PA. Prove that thefollowing two statements are equivalent:58



1) ' is preserved under end-extensions, that is: if M �e M0 is an end-extension of models of PA andM j= ', thenM0 j= ';2) ' is, in PA, equivalent to a �1-sentence.Exercise 69. IfM is a model of PA and a 2M, writeMa for fm 2MjM j=m < ag. Ma is an abelian group under addition modulo a.Recall that an abelian group is cyclic if there is an element g such that everyelement of the group can be written asg + � � �+ g| {z }n times or (�g) + � � �+ (�g)| {z }n timesfor some n 2 IN. The element g is called a generator of the group.i) Prove that there is no formula '(v0; v1) of LPA such that for every modelM of PA and a; b 2 M:M j= '(a; b),Ma is cyclic with generator bii) Prove that in fact,Ma cannot be cyclic if a is nonstandard.Exercise 70. Let M be a model of PA and a; b 2 M. Let us say that b isa witness for a if b codes the type of a in M: that is, (b)n = 0 if and only ifn = p'(v0)q for some ' such thatM j= '(a).i) Show that every modelM of PA has an elementary extension M0 suchthat every a 2M has a witness inM0;ii) Show that every modelM of PA has an elementary extension M0 suchthat every a 2M0 has a witness inM0;iii) Show that the relation \b is a witness for a" is not de�nable in the languageof PA.Exercise 71. For this exercise we assume the theorem (due to Hilbert andBernays) that there is a complete extension T of PA such that the axioms of Tform a �02-set. Prove that there is a modelM of PA such that every elementof SSy(M) is a �02-set.Exercise 72. Show that the collection of all �02-sets is not a Scott set [Hint:relativize Lemma 4.14 to functions partial recursive in K, the halting set].59
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