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1 Diophantine subsets of Qn

Definition. Let R be an integral ring. We call a subset D ⊂ Rn Diophantine if
there exists a finite set of polynomials {P1, . . . , Pr} in n+m variables such that for
any x ∈ Rn,

x ∈ D ⇔ ∃y ∈ Rm : P (x, y) = 0.

We call a predicate, relation, function or property Diophantine if the set of
elements that satisfy the predicate or property, the set of tuples that satisfy the
relation or the graph of the function is Diophantine.

Lemma 1.1. If R is a subring of R, then for every Diophantine set, we can take
r = 1, i.e. only one polynomial.

Proof. Take P = P 2
1 + P 2

2 + · · ·+ P 2
r .

Lemma 1.2. Suppose S, T ⊂ Rn are Diophantine over R, then S ∩ T and S ∪ T
are also Diophantine over R.

Proof. Let S and T be given by sets of polynomials P and Q, where the sets of
variables “yP” and “yQ” are taken to be disdisjoint.

We can use the union of P and Q to give a Diophantine definition of S ∩T . For
S ∪ T , take {pq : p ∈ P, q ∈ Q}.

Lemma 1.3. If R is a field, then the relation 6= is Diophantine.

Proof. In a field R, we have x 6= y if and only if there exists z such that (x− y)z =
1.

Lemma 1.4. If R is a subring of Q, then >,<,≥,≤ and 6= are Diophantine rela-
tions i.e. for any such relation, the set of pairs (a, b) ∈ R2 satisfying such a relation
is a Diophantine set.

Proof. Any positive rational number x can be written as x = m/n for positive
integers m,n. By Lagrange’s four squares theorem, both (m − 1) and (n − 1) are
sums of four squares of integers, so (e2 + f2 + g2 +h2 +1)x = (a2 + b2 + c2 +d2 +1)
for a, b, . . . , h ∈ Z ⊂ R. On the other hand, any rational number x that satisfies
this equation with a, b, . . . , h ∈ R ⊂ Q must be positive.

Now for any pair x, y ∈ R, we have x > y exactly if there is a positive z ∈ R
with x = z + y. Also, x ≥ y exactly if either x > y or x = y. Finally x 6= y exactly
if either x > y or y > x.

Example 1.5. Give Qn = An(Q) the Zariski topology. Any open subset X of a
closed subset of Qn is Diophantine.

Proof. The set X is the zero set of a finite set of polynomials f minus the zero set
of a finite set of polynomials g. Now “f(x) = 0 and g(x) 6= 0” is a Diophantine
property by 1.4 and 1.2.
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Definition. Hilbert’s Tenth Problem over R (HTP(R)) is the following problem. Is
there an algorithm which, on input a polynomial P ∈ R[X1, . . . , Xn] in an arbitrary
number n of variables, decides whether the equation P = 0 has a solution in Rn?

The original tenth problem of Hilbert was to give such an algorithm for R = Z.
The DPRM Theorem implies that no such algorithm exists:

DPRM Theorem (Davis, Putnam, Robinson and Matiyasevich). A subset
of Zn is Diophantine if and only if it is listable.

Proof. See for example [Dav73], [DMR74] or [Poo03].

Corollary 1.6. Hilbert’s Tenth Problem over Z has a negative answer.

Proof. Recall that a set S ∈ Zn is called listable (or recursively enumerable) if there
exists a Turing machine which outputs each element of the set S, but no element
of its complement. The set S is called recursive if there exists a Turing machine
which on a given y ∈ Zn decides whether x ∈ Zn.

We start with the following important fact from recursion theory: There is a
listable set S ⊂ Z that is not recursive. (This follows from the fact that the Halting
Problem is undecidable, see also [Poo03].)

By the DPRM Theorem, S is Diophantine, so (by Lemma 1.1) there exists a
polynomial P (X,Y1, . . . , Yn) ∈ Z[X,Y1, . . . , Yn] such that S consists of those x ∈ Z
for which there exists y ∈ Zn such that P (x, y) = 0. If Hilbert’s Tenth Problem
has a positive solution, then there is an algorithm which decides, given x ∈ Z,
whether P (x, y) = 0 has a solution y ∈ Zn. This contradicts the fact that S is not
recursive.

2 Using the negative solution over Z
One way to try to prove that Hilbert’s Tenth Problem over Q has a negative solution,
is by using the negative solution for Z. For example, if we could prove that Z is
Diophantine over Q, then for any Diophantine equation D over Z we can look at a
family of Diophantine equations over Q consisting of D and for every variable x of
D an equation that has a solution if and only if x ∈ Z. Then a positive answer to
HTP over Q gives us a positive answer over Z, which does not exist.

In this section, we will start by introducing Diophantine models, which simulate
Z in a Diophantine sort of way over Q. The existence of such an object would imply
that HTP over Q has a negative solution. Then we will see that such models are
in contradiction with a conjecture by Mazur about the real topology on varieties.
After that, we move on to objects that are more general than models, but still imply
that HTP has a negative answer over Q.

2.1 Diophantine models

Definition. A Diophantine model of the ring Z over Q is a Diophantine set S ⊂ Qn

together with a bijection φ : Z → S such that both the graphs of addition and
multiplication in Z correspond to Diophantine subsets of S3 ⊂ Q3n.

Lemma 2.1. If S is a Diophantine model of Z in Q, and T is a Diophantine subset
of Zm, then φm(T ) is a Diophantine subset of Sm ⊂ Qnm.

Proof. As T is Diophantine, there is a set Y ⊂ Zl+m and a polynomial f in l +m
variables such that Y is the zero set of f and T is the projection of Y to Qm. We
may add a variable for every + and · in f and end up with a bigger l and a new Y
which is defined by a family of equations of the forms x+ y = z and xy = z. Then
φ(Y ) is a Diophantine subset of Sl+m, so φ(T ) is also Diophantine.
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Proposition 2.2. If there exists a Diophantine model of Z over Q, then HTP(Q)
has a negative answer.

Proof. Given a Diophantine equation D over Zm, let T be the set of solutions of
D. The procedure in the above proof shows that φ(T ) is Diophantine over Q and
even more: we can construct a Diophantine equation E for φ(T ) from D and the
model S. Now a positive solution to HTP(Q) allows us to determine whether E
has a solution, but that is equivalent to determining whether φ(T ) (and hence T )
is non-empty. This is in contradiction with the negative solution to HTP(Z).

Example 2.3. One can construct an elliptic curve E over Q such that E(Q) ∼= Z.
It has been suggested that such a curve may be a good candidate for a Diophantine
model, since addition is given by the chord-and-tangent method, which is already
Diophantine. Unfortunately, it is not known whether multiplication in Z corre-
sponds to a Diophantine function on E(Q).

Actually, because of the point at infinity, E(Q) is not a subset of Qn, hence
we cannot speak about Diophantine sets in our definition. This is not a problem,
because we could take the affine part of the curve and add a point outside the curve
to it, then call that the point at infinity and make some easy exceptions on the
definitions of + and · in our model. This is something which can be done in general:
If our definition of Diophantine model is generalized using algebraic varieties or
algebraic sets, then they can be written as a union of (not neccessarily open) affine
algebraic sets. These affine algebraic sets can then be embedded disjointly into a
higher dimensional An, so can always turn such a model into a Diophantine model
that uses only Qn.

Lemma 2.4. If (S, φ) is a Diophantine model of Z over Q, then both φ and its
inverse on S are Turing computable.

Proof. A Turing machine could search for a0 ∈ S such that (a0, a0, a0) is in the set
S+, corresponding to the graph of addition in Z. Then φ(0) must be a0. Then it
could search for a1 ∈ S, different from a0, such that (a1, a1, a1) is in the set S•,
corresponding to the graph of multiplication. This gives φ(1) = a1. After that,
the machine could look for φ(−1) = a−1 such that (a−1, a1, a0) ∈ S+. Then it
can calculate φ(n) for every n recursively as follows: For n ∈ Z find φ(n ± 1) by
searching for a ∈ S with (φ(n), a±1, a) ∈ S+.

Now for a given b ∈ B, a Turing machine could look at φ(0), φ(1), φ(−1), φ(2),
φ(−2), . . ., until it finds φ(a) = b. So the inverse of φ is also computable.

2.2 Mazur’s Conjecture

Mazur’s Conjecture ([Maz92, Conjecture 3]). If X is a variety over Q, then
the real topological closure of X(Q) in X(R) has finitely many connected compo-
nents.

That is, X(R) inherits a topology from the topology of R and X(Q) is a subset
of X(R), so we could look at the closure of X(Q) in X(R). Now X(R) consists of
finitely many components, but X(Q) is not always equal to X(R). The conjecture
states however, that X(Q) also consists of only finitely many components. This
conjecture is the weakest of a series of conjectures posed by Barry Mazur in the
1990’s. It is known to hold for example when X is a curve or an abelian variety
(see [Poo03]).

Now, we will look at this conjecture in connection with Diophantine models.
First, we note that Mazur’s conjecture implies the same statement for Diophantine
sets:
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Proposition 2.5. Mazur’s conjecture implies that the real topological closure S of
any Diophantine subset S ⊂ Qn, consists of finitely many connected components.

Proof. If S is Diophantine, then there is an algebraic set Y ⊂ Qm+n such that S is
the image of a continuous map f from Y to Qn. The set Y is the union of the sets
of rational points on finitely many varieties, so by Mazur’s conjecture, Y consists
of finitely many connected components.

From now on, the argument is purely topological. By a limit argument, we see
that Y gets mapped inside f(Y ), so S = f(Y ) = f(Y ). A continuous map maps
connected sets to connected sets, so f(Y ) is a finite union of connected components,
because Y is. The closure of a finite union is the union of the closures, so S = f(Y )
consists of finitely many connected components.

From this proposition, we immediately get the following result, which was the
reason Mazur proposed this conjecture.

Corollary 2.6 (Mazur). Mazur’s conjecture implies that no infinite Diophantine
subset of Qn is discrete in the real topology. In particular, if Mazur’s conjecture is
true, then Z is not Diophantine in Q.

But even more is true:

Theorem 2.7 (Cornelissen-Zahidi [CZ00]). Mazur’s conjecture implies that
there is no Diophantine model of Z over Q.

Proof. Assume Mazur’s conjecture and suppose that there is a Diophantine model
(S, φ) of Z over Q. By Corollary 2.6, there is a non-isolated point s ∈ S.

We construct a sequence of integers (mi)∞i=1 as follows. If φ(0) = s, then m1 = 1,
otherwise m1 = 0. Order Z as 0, 1,−1, 2,−2, 3, . . .. Then for any positive integer i,
let mi+1 be first integer after mi (in the above ordering) such that

0 < |φ(mi+1)− s| ≤ |φ(mi)− s|/2,

where | · | is the Euclidean norm. Because φ is computable (Lemma 2.4), we can cal-
culate mi+1 with a Turing machine by inspecting the integers after mi. This shows
that the set M = {mi : i = 1, 2, 3, . . .} is listable, so by the DPRM Theorem, it is
Diophantine. But then φ(M) is also Diophantine (Lemma 2.1), which contradicts
Corollary 2.6, because all the points in φ(M) are isolated.

Notice that the above does not say that the model itself is a counterexample
to Mazur’s conjecture. We need the entire DPRM Theorem to construct the coun-
terexample.

2.3 Diophantine Interpretation

In this section we will look at Diophantine interpretations, which are more general
than Diophantine models, but still imply that HTP(Q) has a negative answer.
The main open question is whether Diophantine interpretations contradict Mazur’s
conjecture, like Diophantine models do.

Definition. A Diophantine interpretation1 is a Diophantine set S ⊂ Qn together
with a surjection ψ : S → Z such that the inverse images S+ resp. S• of the graphs
of addition and multiplication in Z are Diophantine subsets of S3.

We can apply the same proofs as for Lemma 2.1 and proposition 2.2 if we replace
the images under φ by the inverse images under ψ. So we get

1This is non-standard terminology, taken from [Poo03].
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Lemma 2.8. If S is a Diophantine interpretation of Z over Q, and T is a Dio-
phantine subset of Zm, then ψ−1(T ) is a Diophantine subset of Sm.

Proposition 2.9. If there exists a Diophantine interpretation of Z over Q, then
HTP(Q) has a negative answer.

Now, we have seen that Diophantine interpretations are just as useful for HTP(Q)
as Diophantine models. Next, we will see that they are just as computable.

Remark 2.10. We can define the equivalence relation ∼ on an interpretation S
by b ∼ b′ ⇔ ψ(b) = ψ(b′). This relation is Diophantine, because if we pick b0 such
that ψ(b0) = 0, then ψ(b) = ψ(b′) if and only if (b, b0, b′) ∈ S+.

Lemma 2.11. If (S, ψ) is a Diophantine interpretation of Z over Q, then the
surjection ψ has a Turing computable section φ, that is, ψ ◦ φ = idZ. Also, this
implies that ψ is Turing computable.

Proof. First, a section φ is calculated in the same way as in the proof of Lemma
2.4. Then for given b ∈ S, a Turing machine could search all pairs (a, b′) with a ∈ Z
and b′ ∈ S for a pair such that φ(a) = b′ and b ∼ b′. Such a pair exists and ∼ is
Diophantine by the above remark, so it will be found. Then ψ(b) = ψ(b′) = a.

Now that we have seen some things that are the same, the question is: what is
new? Suppose that (S, ψ) is a Diophantine interpretation of Z over Q. If there is
a Diophantine subset T ⊂ Qn such that T intersects every fibre of ψ exactly once,
then T ∩ S is a Diophantine model. So in order to get something really new from
our generalization, we have to prevent this from happening.

Also, the natural question arises: do Diophantine interpretations allow us to
escape Mazur’s conjecture? In other words,

Open Question 2.12. Does Mazur’s conjecture imply that there is no Diophantine
interpretation of Z over Q?

We have already seen that the existence of a Diophantine set T such that #(T ∩
ψ−1a) = 1 for every a ∈ Z implies that there is a Diophantine model and Mazur’s
conjecture is false. Even more is true: If we only have #(T ∩ ψ−1a) ≤ 1 for every
a ∈ Z and T ∩S is infinite, then we can adapt the proof of Theorem 2.7 to see that
Mazur’s conjecture is false:

Proposition 2.13. If there is a Diophantine interpretation (S, ψ) and a Diophan-
tine set T such that T ∩S is infinite and #(T ∩ψ−1(a)) ≤ 1 for every a ∈ Z. Then
Mazur’s conjecture is false.

Proof. Suppose that we have such S, T ⊂ Qn and suppose that Mazur’s conjecture
is true. Then S ∩ T is an infinite Diophantine set, so by Corollary 2.6, there is a
non-isolated point s ∈ S.

We construct a sequence ni in S∩T as follows. Let n0 be any point different from
s. Then, to find ni+1, we inspect all points b in S ∩ T until 0 < |b− s| ≤ |ni − s|/2.
Then we set ni+1 = b. This construction can be done by a Turing machine and ψ
is computable by Lemma 2.11. Therefore, the set M = {ψ(ni) : i = 0, 1, 2 . . .} ⊂ Z
is listable, hence Diophantine by the DPRM Theorem. This implies (Lemma 2.8)
that T ∩ ψ−1(M) = {ni : i = 0, 1, 2, . . .} is Diophantine. But it is also infinite and
discrete, so this contradicts Corollary 2.6.

Corollary 2.14. Suppose that there is a Diophantine interpretation (S, ψ). If there
exist a Diophantine set T ⊂ Qn and a listable set L ⊂ Z such that T ∩ ψ−1(L) is
infinite and #(T ∩ ψ−1(a)) ≤ 1 for every a ∈ L, then Mazur’s conjecture is false.
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Proof. By the DPRM Theorem, L is Diophantine. Therefore, so is T ∩ ψ−1(L), so
we replace T by T ∩ ψ−1(L). Then T ∩ ψ−1(a) is empty for all a 6∈ L and we can
apply the proposition.

So in order to escape Mazur’s conjecture, we at least need to make sure that
there is no Diophantine set T as above.
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