Homework set 6 solutions

Hilbert’s tenth problem seminar, Fall 2013, due November 4th
By Niels Voorneveld

la: A possible way to define 0 is as ¢ = 0 < Vz : (z-¢c = ¢). If ¢ = 0, the right hand
side is trivial. If the right hand side is true, we have for t =0,0=0-c=z-c=c.

1b: Take la as induction basis, hence 0 is arithmetically definable in terms of S, + and -.
Assume that we have proven that neZ is arithmetically definable in terms of S and -. Then
P(c) = ¢=5(n) and M(c) = S(c) = n give arithmetical definitions of respectively (n + 1) and
(n —1) in terms of S and n (where n is defined in terms of S and -). So by induction, all neZ
are arithmetically definable in S and -.

1c: Notice that c(a+b) = c? < S(a-c)-S(b-c) = S[(c-¢)-S(a-b)]. As long as c is not equal to
zero, we have that c(a+b) =c? & a+b=c. If c=0 then a+b = ciff a + b = 0 which is if and
only if a-a = b-b and either a is not b or a = 0. In 1b, we have proven that zero is arithmetically
definable in terms of S and -. So we can construct a statement defining a + b = ¢ by A(a,b,c) =

[c=0Aa-a=b-bA(a=0V-(a=0))|V[(c=0)AS(a-¢c)-Sb-c)=S[(c-c)-S(a-b)].

2a: First note that the concept of positive integers (Pos) is arithmetically definable in terms of
Int, + and - over rationals: Pos(a) <> =(Vz : (a-x = a)) A (Fz,y, z, w : [Int(z) AInt(y) AInt(z) A
Inttw)Na=z-24+y-y+z-z+w-wl).

Then, for any positive denominator a of a rational b, we have that Pos(a) and Int(a-b). Hence,
the smallest denominator can be written as:

a = den(b) <+ Pos(a) AInt(a-b) AVe: (Pos(c) AInt(c-b) A—(c=a)) — 3d : (Pos(d) Na+d = c)

2b: Note that a > b iff a - den(a) - den(b) > b- den(a) - den(b). Since both sides of the sec-
ond inequality are an integer we thus have that: a > b <> Jc: (Pos(c) A (a - den(a) - den(b) =
b-den(a) - den(b) + ¢))

2c: a = |b] is true if and only if a is an integer and both a < bV a = b, and a +1 > b
are true. To avoid using 1, we can replace the second statement by Ve : Pos(c) — a+ ¢ > b.
Hence a = |b] +> Int(a) A (a <bVa=0b)AVc: (Pos(c) = b < (a+c))

3: Note, it was given in the exercise that U(c) <+ ¢ = 1, hence U(c) is true for a unique
value of ¢. Denote 1 as the constant defined by U. Secondly, it is needed that the relation Pos
is closed under addition, which I forget to demand. People who explained that they needed
this second fact and used good arguments to show that without them they couldn’t solve the
exercises, received all points.

B7: Take ®(c) as the statement Va,b : [Pos(a) A Pos(b) A(a+c=b+c)] = a=0>b. We will
use induction to prove that this formula is true. Axiom B2 gives that ®(1) is true, which is the
induction basis. Assume now that for ¢ we have ®(c) is true. Take a and b such that Pos(a) and



Pos(b) are true and such that a+ (c+1) = b+ (c¢+1). By B3 we have a+(c+1) = (a+¢)+1 and
b+(c+1) = (b+¢)+1. So (a+c)+1 = (b+c)+1. So by B2 a+c¢ = b+c. By induction hypothesis,
we have a = b. So we can conclude that a + (¢ + 1) = b+ (¢ + 1) implies a = b, so ®(c+ 1) is
true. So by B6 we have that for all ¢ with Pos(c), ®(c) is true, which is precisely the statement B7.

B9: Let ®(c) be the statement: Va,b: [Pos(a) A Pos(b)] = a+ (b+¢) = (a4 b) + ¢. B3 tells us
®(1) is true. Assume for ¢ where Pos(c) is true, that ®(c) is true. Then for a and b with Pos(a)
and Pos(b), we have a+ (b+ (c+ 1)) =a+ ((b+c)+1)=(a+ (b+c)+1=((a+b)+c)+1=
(a+b)+ (c+1) by B3,B3,Induction Hypothesis and B3 respectively. So ®(c+ 1) is true, hence
®(c) implies ®(c + 1). So by B6 we have that for all ¢ with Pos(c), ®(c) is true.

B8: Let ®(c) be the statement: Pos(c) = ¢+ 1 = 1+ ¢. We will use induction to prove
that this formula is true. Trivially, ®(1) is true (1 +1 = 1+ 1). Now assume that for ¢ with
Pos(c) true, that ®(c) is true, so c+ 1 =1+ c. Hence (¢c+ 1)+ 1 = (14 ¢) + 1 which is by B3
equal to 1+ (¢+1). So ®(c+ 1) is true. By B6 we have that for all ¢ with Pos(c), ®(c).

Let ¥(a) be the statement Ve : Pos(c) — ¢+ a = a+ ¢. We have just proven that ¥(1) is true.
Now assume that for ¢, Pos(c), ¥(c) is true. Soc+ (a+1) =(c+a)+1=(a+c)+1=
a+(c+1)=a+(1+c¢) = (a+1)+cby B3, induction hypothesis, B3, (1) and B9 respectively.
Hence ¥(a + 1) is true. So, by B6 we have that for all a with Pos(a), ¥(a) is true, which is
precisely BS.

Points:

la: 1 point.

1b: 1 point (0.5 for positive integers and 0.5 for negative integers)

lc: 1 point (0.5 for statement and 0.5 for explanation)

2a: 2 points (0.5 for proving that positive integers are arithmetically definable (or ordering of
integers is arithmetically definable). 1 for the statement and 0.5 for the explanation)
2b: 1 point (0.5 for statement and 0.5 for explanation)

2¢: 1 point (0.5 for statement and 0.5 for explanation)

3a: 1 point

3b: 1 point (0.5 for each induction proof)

3c: 1 point



