
Homework set 6 solutions

Hilbert’s tenth problem seminar, Fall 2013, due November 4th

By Niels Voorneveld

1a: A possible way to define 0 is as c = 0 ↔ ∀x : (x · c = c). If c = 0, the right hand
side is trivial. If the right hand side is true, we have for x = 0, 0 = 0 · c = x · c = c.

1b: Take 1a as induction basis, hence 0 is arithmetically definable in terms of S, + and ·.
Assume that we have proven that nεZ is arithmetically definable in terms of S and ·. Then
P (c) = c = S(n) and M(c) = S(c) = n give arithmetical definitions of respectively (n + 1) and
(n − 1) in terms of S and n (where n is defined in terms of S and ·). So by induction, all nεZ
are arithmetically definable in S and ·.

1c: Notice that c(a+ b) = c2 ⇔ S(a · c) ·S(b · c) = S[(c · c) ·S(a · b)]. As long as c is not equal to
zero, we have that c(a+ b) = c2 ⇔ a+ b = c. If c = 0 then a+ b = c iff a+ b = 0 which is if and
only if a ·a = b · b and either a is not b or a = 0. In 1b, we have proven that zero is arithmetically
definable in terms of S and ·. So we can construct a statement defining a+ b = c by A(a, b, c) =
[c = 0 ∧ a · a = b · b ∧ (a = 0 ∨ ¬(a = b))] ∨ [¬(c = 0) ∧ S(a · c) · S(b · c) = S[(c · c) · S(a · b)].

2a: First note that the concept of positive integers (Pos) is arithmetically definable in terms of
Int, + and · over rationals: Pos(a)↔ ¬(∀x : (a ·x = a))∧ (∃x, y, z, w : [Int(x)∧Int(y)∧Int(z)∧
Int(w) ∧ a = x · x+ y · y + z · z + w · w]).

Then, for any positive denominator a of a rational b, we have that Pos(a) and Int(a · b). Hence,
the smallest denominator can be written as:
a = den(b)↔ Pos(a)∧ Int(a · b)∧∀c : (Pos(c)∧ Int(c · b)∧¬(c = a))→ ∃d : (Pos(d)∧a+d = c)

2b: Note that a > b iff a · den(a) · den(b) > b · den(a) · den(b). Since both sides of the sec-
ond inequality are an integer we thus have that: a > b ↔ ∃c : (Pos(c) ∧ (a · den(a) · den(b) =
b · den(a) · den(b) + c))

2c: a = bbc is true if and only if a is an integer and both a < b ∨ a = b, and a + 1 > b
are true. To avoid using 1, we can replace the second statement by ∀c : Pos(c) → a + c > b.
Hence a = bbc ↔ Int(a) ∧ (a < b ∨ a = b) ∧ ∀c : (Pos(c)→ b < (a+ c))

3: Note, it was given in the exercise that U(c) ↔ c = 1, hence U(c) is true for a unique
value of c. Denote 1 as the constant defined by U . Secondly, it is needed that the relation Pos
is closed under addition, which I forget to demand. People who explained that they needed
this second fact and used good arguments to show that without them they couldn’t solve the
exercises, received all points.

B7: Take Φ(c) as the statement ∀a, b : [Pos(a) ∧ Pos(b) ∧ (a+ c = b+ c)]→ a = b. We will
use induction to prove that this formula is true. Axiom B2 gives that Φ(1) is true, which is the
induction basis. Assume now that for c we have Φ(c) is true. Take a and b such that Pos(a) and
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Pos(b) are true and such that a+(c+1) = b+(c+1). By B3 we have a+(c+1) = (a+c)+1 and
b+(c+1) = (b+c)+1. So (a+c)+1 = (b+c)+1. So by B2 a+c = b+c. By induction hypothesis,
we have a = b. So we can conclude that a + (c + 1) = b + (c + 1) implies a = b, so Φ(c + 1) is
true. So by B6 we have that for all c with Pos(c), Φ(c) is true, which is precisely the statement B7.

B9: Let Φ(c) be the statement: ∀a, b : [Pos(a) ∧ Pos(b)]→ a+ (b+ c) = (a+ b) + c. B3 tells us
Φ(1) is true. Assume for c where Pos(c) is true, that Φ(c) is true. Then for a and b with Pos(a)
and Pos(b), we have a+ (b+ (c+ 1)) = a+ ((b+ c) + 1) = (a+ (b+ c)) + 1 = ((a+ b) + c) + 1 =
(a+ b) + (c+ 1) by B3,B3,Induction Hypothesis and B3 respectively. So Φ(c+ 1) is true, hence
Φ(c) implies Φ(c+ 1). So by B6 we have that for all c with Pos(c), Φ(c) is true.

B8: Let Φ(c) be the statement: Pos(c) → c + 1 = 1 + c. We will use induction to prove
that this formula is true. Trivially, Φ(1) is true (1 + 1 = 1 + 1). Now assume that for c with
Pos(c) true, that Φ(c) is true, so c+ 1 = 1 + c. Hence (c+ 1) + 1 = (1 + c) + 1 which is by B3
equal to 1 + (c+ 1). So Φ(c+ 1) is true. By B6 we have that for all c with Pos(c), Φ(c).
Let Ψ(a) be the statement ∀c : Pos(c)→ c+ a = a+ c. We have just proven that Ψ(1) is true.
Now assume that for c, Pos(c), Ψ(c) is true. So c + (a + 1) = (c + a) + 1 = (a + c) + 1 =
a+ (c+ 1) = a+ (1 + c) = (a+ 1) + c by B3, induction hypothesis, B3, Φ(1) and B9 respectively.
Hence Ψ(a + 1) is true. So, by B6 we have that for all a with Pos(a), Ψ(a) is true, which is
precisely B8.

Points:
1a: 1 point.
1b: 1 point (0.5 for positive integers and 0.5 for negative integers)
1c: 1 point (0.5 for statement and 0.5 for explanation)
2a: 2 points (0.5 for proving that positive integers are arithmetically definable (or ordering of
integers is arithmetically definable). 1 for the statement and 0.5 for the explanation)
2b: 1 point (0.5 for statement and 0.5 for explanation)
2c: 1 point (0.5 for statement and 0.5 for explanation)
3a: 1 point
3b: 1 point (0.5 for each induction proof)
3c: 1 point
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