Topos Theory, Spring 2020
 Exercises and Hand-In Exercises

Jaap van Oosten

February-May 2020

1 Exercises

Exercise 1 For a nonempty set A, let F_{A} be the following presheaf on the real numbers \mathbb{R} :

$$
F_{A}(U)=\left\{\begin{aligned}
A & \text { if } 0 \in U \\
\{*\} & \text { else }
\end{aligned}\right.
$$

Show that F_{A} is a sheaf, and give a concrete presentation of the étale space corresponding to F_{A}.

Exercise 2 We denote the category of presheaves on a topological space X by $\widehat{\mathcal{O}(X)}$. Recall that Et / X is the full subcategory of the slice Top / X on the etale maps.
a) Show that Et/ X is closed under the finite limits in Top / X.
b) Show that the construction which from a presheaf F on X makes an etale $\operatorname{map} \pi: \coprod_{x \in X} G_{x} \rightarrow X$ is part of a functor $\widehat{\mathcal{O}(X)} \rightarrow$ Et/ X which preserves finite limits.

Exercise 3 Let $\Delta: X \times X \rightarrow \Omega$ be the classifying map of the diagonal subobject $X \xrightarrow{\delta} X \times X$; and let $\{\cdot\}: X \rightarrow \Omega^{X}$ be the exponential transpose of Δ. Prove that $\{\cdot\}$ is mono.

Exercise 4 (Hand-In Exercise 1, to be handed in Fenruary 27) Show that the functor $Y \mapsto \tilde{Y}$, which gives for each object Y the underlying object of the partial map classifier for Y, has the structure of a monad.

Exercise 5 Construct in the category $\widehat{\mathcal{C}}$ of presheaves on \mathcal{C}, the partial map classifier of an arbitrary presheaf F.

Exercise 6 Construct partial map classifiers in the category Et/ X, for a space X.

Exercise 7 a) Prove that in a topos, an object is injective if and only if it is a retract of some object of the form Ω^{Y}.
b) Suppose $A \xrightarrow{G} B$ is a functor with left adjoint $B \xrightarrow{F} A$. Show that if F preserves monos, G preserves injective objects, and that the converse holds if A has enough injectives (that is, in A every object is a subobject of an injective object).

Exercise 8

Exercise 9

Exercise 10 Let F be a presheaf on a small category \mathcal{C}. Construct, for objects $G \xrightarrow{g} F, H \xrightarrow{h} F$ of the slice category $\widehat{\mathcal{C}} / F$, the exponential h^{g}.

Exercise 11 Prove that for objects X, Y of a topos \mathcal{E} and their coproduct $X+Y$, the categories $\mathcal{E} /(X+Y)$ and $\mathcal{E} / X \times \mathcal{E} / Y$ are equivalent.

Exercise 12 (Hand-In Exercise 2, to be handed in March 12) Define for every morphism $f: X \rightarrow Y$, not just monomorphisms, an arrow $\exists_{f}: \Omega^{X} \rightarrow \Omega^{Y}$ in such a way that we obtain a functor $\Omega^{(-)}: \mathcal{E} \rightarrow \mathcal{E}$. Show also that the arrows $\{\cdot\}: X \rightarrow \Omega^{X}$ form a natural transformation from the identity on \mathcal{E} to $\Omega^{(-)}$.

