Topos Theory, Spring 2021 Hand-In Exercises

Jaap van Oosten

February-May 2021

1 Exercises

Exercise 1 (Deadline: March 7) Let \mathcal{C} be a small category. Suppose \mathcal{R} is an operation that assigns, to each object C of \mathcal{C}, a family $\mathcal{R}(C)$ of sieves on C.

Given a presheaf X on \mathcal{C} and a subobject A of X with classifying map $\chi_{A}: X \rightarrow \Omega$, we define a subobject \bar{A} of X by putting

$$
\bar{A}(C)=\left\{x \in X(C) \mid \chi_{A}(x) \in \mathcal{R}(C)\right\}
$$

Prove that the operation $A \mapsto \bar{A}$ is a universal closure operation on $\widehat{\mathcal{C}}$ if and only if \mathcal{R} is a Grothendieck topology on \mathcal{C}.

Exercise 2 (Deadline: March 21) Let \mathcal{E} be a topos, X an object of \mathcal{E} and $(A \xrightarrow{a} X)$ an object of the slice category \mathcal{E} / X.
a) Show that there is a bijection between subobjects of $(A \xrightarrow{a} X)$ in \mathcal{E} / X, and subobjects of A in \mathcal{E}.
b) Show that the forgetful functor $\mathcal{E} / X \rightarrow \mathcal{E}$, which sends $(A \xrightarrow{a} X)$ to A, preserves and reflects monomorphisms.
c) Show that the diagram

(where p_{1} is the projection on the second coordinate, and t is the composition $X \xrightarrow{!} 1 \xrightarrow{t} \Omega$) is a subobject classifier in \mathcal{E} / X.

Exercise 3 (Deadline: April 4) Give the details of the proof of Proposition 1.44, which says that there is a 1-1 correspondence between universal closure operations and Lawvere-Tierney topologies in a topos.

Exercise 4 (Deadline: April 18) Suppose \mathcal{E} is a topos, and $\overline{(\cdot)}$ is a universal closure operation on \mathcal{E}.

For a morphism $f: X \rightarrow Y$ in \mathcal{E} we let $\forall_{f}: \operatorname{Sub}(X) \rightarrow \operatorname{Sub}(Y)$ be the restriction of the functor $\prod_{f}: \mathcal{E} / X \rightarrow \mathcal{E} / Y$ to the subcategories Mon $/ X$ and Mon/ Y of monos into X, Y respectively. We have $f^{*}: \operatorname{Sub}(Y) \rightarrow \operatorname{Sub}(X)$ by pullback, and f^{*} is left adjoint to \forall_{f}.
a) Prove: if $A \in \operatorname{Sub}(X)$ is closed in X, then $\forall_{f}(A)$ is closed in Y.
b) Prove that for every pair A, B of subobjects of X there exists a subobject $A \Rightarrow B$ of X which satisfies, for each $C \in \operatorname{Sub}(X)$:

$$
C \leq(A \Rightarrow B) \text { if and only if } C \cap A \leq B
$$

Hint: if A is given by the mono $a: A \rightarrow X$, consider the subobject $\forall_{a}\left(a^{*}(B)\right)$.
c) Show that for the subobject $A \Rightarrow B$ of X of part b), we always have: if B is closed, then $A \Rightarrow B$ is closed.

Exercise 5 (Deadline: May 9) We consider the presheaf topos $\widehat{\mathcal{C}}$ for a small category \mathcal{C}; let C be a fixed object of \mathcal{C}. Let $\mathrm{ev}_{C}: \widehat{\mathcal{C}} \rightarrow$ Set denote the functor which sends a presheaf X to $X(C)$.
a) Show that ev_{C} preserves all small limits and colimits.
b) Let $A: \mathcal{C} \rightarrow$ Set be the representable functor on C, i.e. the functor which sends an object D to the set $\mathcal{C}(C, D)$. Prove that A is flat.
c) Give a concrete description of the functor $G:$ Set $\rightarrow \widehat{\mathcal{C}}$ which is right adjoint to ev_{C}.
d) Show that the geometric morphism Set $\rightarrow \widehat{\mathcal{C}}$ determined by the adjunction $\mathrm{ev}_{C} \dashv G$ is essential.

Exercise 6 (Deadline: May 30) Let \mathcal{C} be a poset and X a presheaf on \mathcal{C} with the property that for every inequality $k^{\prime} \leq k$ in \mathcal{C}, the map $X(k) \rightarrow X\left(k^{\prime}\right)$ is an inclusion of sets. We consider interpretations of a 1 -sorted language where X is the interpretation of the unique sort. We study formulas of the form

$$
\begin{equation*}
\forall x(A(x) \vee B) \rightarrow(\forall x A(x) \vee B) \tag{D}
\end{equation*}
$$

where A and B are arbitrary formulas, but the formula B does not contain the variable x free.

Prove that all formulas of the form (D) are always true in X, precisely when X is a constant presheaf.

2 Solutions

Exercise 1 Some notations, which occur also in the lecture notes: for a presheaf X on a category \mathcal{C}, an arrow $f: C^{\prime} \rightarrow C$ and an element $x \in X(C)$ we write $x f$ or $X(f)(x)$ for the action of X on f and x. If R is a sieve on C we write $f^{*} R$ for the set $\left\{g \in \mathcal{C}_{1} \mid \operatorname{cod}(g)=C^{\prime}, f g \in R\right\}$. So if we regard R as element of $\Omega(C)$ then $f^{*} R=R f=\Omega(f)(R)$. We write $\max (C)$ for the maximal sieve on C.

We start with some simple remarks:

1. For a sieve R on C, we have $R=\max (C)$ if and only if $\mathrm{id}_{C} \in R$.
2. For a sieve R on C and $f: C^{\prime} \rightarrow C$, we have $f^{*} R=\max \left(C^{\prime}\right)$ if and only if $f \in R$.
3. Let T be the subobject of Ω which is represented by the mono $1 \xrightarrow{t} \Omega$. Then T is classified by the identity on Ω : $\chi_{T}=\mathrm{id}_{\Omega}$.
First, let us assume that the operation $A \mapsto \bar{A}$ is a universal closure operation. For the subobject T of Ω defined in remark 3., we have $\bar{T}(C)=\{R \in$ $\left.\Omega(C) \mid\left(\chi_{T}\right)_{C}(R) \in \mathcal{R}(C)\right\}=\mathcal{R}(C)$ (by remark 2.). Since \bar{T} is a presheaf, we must have that if $R \in \mathcal{R}(C)$ and $f: C^{\prime} \rightarrow C$ then $f^{*} R \in \mathcal{R}\left(C^{\prime}\right)$, which is the second requirement ("stability") for \mathcal{R} to be a Grothendieck topology.

Since $T \subseteq \bar{T}$ we must have $\max (C) \in \mathcal{R}(C)$, which is the second requirement.
Now let us consider a sieve S on C as subobject of the representable presheaf y_{C}. It is classified by the map $\chi_{S}: y_{C} \rightarrow \Omega$ which sends $f: C^{\prime} \rightarrow C$ to $f^{*} S$. Now for the closure $\bar{S} \subseteq y_{C}$ we have

$$
\begin{aligned}
\bar{S}\left(C^{\prime}\right) & =\left\{f: C^{\prime} \rightarrow C \mid\left(\chi_{S}\right)_{C^{\prime}}(f) \in \mathcal{R}\left(C^{\prime}\right)\right\} \\
& =\left\{f: C^{\prime} \rightarrow C \mid f^{*} S \in \mathcal{R}\left(C^{\prime}\right)\right\}
\end{aligned}
$$

From this, using remarks 1. and 3., we deduce that $S \in \mathcal{R}(C)$ if and only if $\bar{S}=y_{C}$. Now we see that if R and S are sieves on C and $R \in \mathcal{R}(C)$, then also $S \in \mathcal{R}(C)$; for, we have $y_{C}=\bar{R} \subseteq \bar{S}$. It remains to prove local character for \mathcal{R}. So suppose R is a sieve on $C, S \in \mathcal{R}(C)$ and for all $g: C^{\prime} \rightarrow C$ in S we have $g^{*} R \in \mathcal{R}\left(C^{\prime}\right)$. We need to see that $R \in \mathcal{R}(C)$.

The classifying map $\chi_{\mathcal{R}}$ for \mathcal{R} as subobject of Ω sends $R \in \Omega(C)$ to the sieve $\left\{g: C^{\prime} \rightarrow C \mid g^{*} R \in \mathcal{R}\left(C^{\prime}\right)\right\}$. So,

$$
\begin{aligned}
\overline{\mathcal{R}}(C) & =\left\{R \in \Omega(C) \mid\left(\chi_{\mathcal{R}}\right)_{C}(R) \in \mathcal{R}(C)\right\} \\
& =\left\{R \in \Omega(C) \mid\left\{g: C^{\prime} \rightarrow C \mid g^{*} R \in \mathcal{R}\left(C^{\prime}\right)\right\} \in \mathcal{R}(C)\right\}
\end{aligned}
$$

Hence, our assumptions on R and S imply that $S \subseteq\left(\chi_{\mathcal{R}}\right)_{C}(R)$. Since $S \in \mathcal{R}(C)$, we have $\left(\chi_{\mathcal{R}}\right)_{C}(R) \in \mathcal{R}(C)$, which means that $R \in \overline{\mathcal{R}}(C)$. Now $\overline{\mathcal{R}}=\overline{\bar{T}}=\bar{T}=\mathcal{R}$, so $R \in \bar{R}(C)$, as desired. We conclude that \mathcal{R} is a Grothendieck topology.

Conversely, assume that \mathcal{R} is a Grothendieck topology, so it satisfies conditions i), ii) ("stability") and iii) ("local character") of Definition 0.16. We define the operation $A \mapsto \bar{A}$ as in the exercise, and prove that this is a universal closure operation. We check the conditions of Definition 0.18.

First we see that if R, S are sieves on C, with $R \subseteq S$ and $R \in \mathcal{R}(C)$, then $S \in \mathcal{R}(C)$. This follows from i) and iii) of 0.16 , since for each $f: C^{\prime} \rightarrow C$ in R, $f^{*} S=\max \left(C^{\prime}\right)$.

Since $\max (C) \in \mathcal{R}(C)$, we see at once that $A \subseteq \bar{A}$, which is requirement i) of 0.18 .

If $A \subseteq B$ for subobjects A, B of X, then $\left(\chi_{A}\right)_{C}(x) \subseteq\left(\chi_{B}\right)_{C}(x)$ always, and hence $\bar{A}(C) \subseteq \bar{B}(C)$, which is iii) of 0.18 .

Condition iv) of 0.18 follows from stability of \mathcal{R}.
Finally, in order to prove condition ii), we calculate:

$$
\begin{aligned}
\overline{\bar{A}}(C) & =\left\{x \in X(C) \mid\left(\chi_{\bar{A}}\right)_{C}(x) \in \mathcal{R}(C)\right\} \\
& =\left\{x \in X(C) \mid\left\{g: C^{\prime} \rightarrow C \mid\left(\chi_{A}\right)_{C^{\prime}}(x g) \in \mathcal{R}\left(C^{\prime}\right)\right\} \in \mathcal{R}(C)\right\}
\end{aligned}
$$

Suppose $x \in \overline{\bar{A}}(C)$. Then $\left(\chi_{\bar{A}}\right)_{C}(x) \in \mathcal{R}(C)$, and for any element g of this sieve we have: $g^{*}\left(\left(\chi_{A}\right)_{C}(x)\right)=\left(\chi_{A}\right)_{C^{\prime}}(x g)$, which is an element of $\mathcal{R}\left(C^{\prime}\right)$. By local character of \mathcal{R} we conclude $\left(\chi_{A}\right)_{C}(x) \in \mathcal{R}(C)$, which means $x \in \bar{A}(C)$. So $\overline{\bar{A}}=\bar{A}$ and we are done.

Exercise 2. It seems best to start with part b). Let $\sum_{X}: \mathcal{E} / X \rightarrow \mathcal{E}$ denote the forgetful functor. Let $f:(B \xrightarrow{b} X) \rightarrow(A \xrightarrow{a} X$ be an arrow in \mathcal{E} / X. Suppose $\sum_{X}(f)$, which is $f: B \rightarrow A$, is mono in \mathcal{E} and suppose g, h are arrows $(C \xrightarrow{c} X) \rightarrow(B \xrightarrow{b} X)$ sauch that $f g=f h$. Then since f is mono in \mathcal{E} we have $g=h$ in \mathcal{E}, but then also $g=h$ in \mathcal{E} / X. So \sum_{X} reflects monos. Now if f is mono in \mathcal{E} / X and $f g=f h$ in \mathcal{E}, for a parallel pair $g, h: C \rightarrow B$, then we have $b g=a f g=a f h=b h: C \rightarrow X$, so for $c=b g=b h$ we have that g, h are arrows $(C \xrightarrow{c} X) \rightarrow(B \xrightarrow{b} X)$, so since f is mono in $\mathcal{E} / X, g=h$. So f is mono in \mathcal{E} and \sum_{X} preserves monos, as claimed.

For a), we define a bijection between monos to $A \xrightarrow{a} X$ in \mathcal{E} / X and monos to A in \mathcal{E}. For a mono $f:(B \xrightarrow{b} X) \rightarrow(A \xrightarrow{a} X)$ let $\phi(f)=f: B \rightarrow A$. For a mono $g: B \rightarrow A$ in \mathcal{E}, let $\chi(g)=g:(B \xrightarrow{a g} X) \rightarrow(A \xrightarrow{a} X)$. It is immediate that $\phi \chi(g)=g$ and $\chi \phi(f)=f$. Moreover, $\phi(f)$ in mono since \sum_{X} preserves monos, and $\chi(g)$ is mono since \sum_{X} reflects monos.

Then, we should show that for monos $f: B \rightarrow A$ and $f^{\prime}: B^{\prime} \rightarrow A$ in \mathcal{E} we have: f factors through f^{\prime} (in which case the subobject represented by f is \leq the subobject represented by $\left.f^{\prime}\right)$ if and only if $\chi(f)$ factors through $\chi\left(f^{\prime}\right)$ in \mathcal{E} / X. This is evident.
c) Given a mono $g:(B \xrightarrow{b} X) \rightarrow(A \xrightarrow{a} X)$ is mono in \mathcal{E} / X, by b) we know that g is mono in \mathcal{E}; let $\chi_{g}: A \rightarrow \Omega$ its classifying map. We have a pullback diagram

in \mathcal{E}. It is left to you to show that the diagram

is also a pullback diagram in \mathcal{E}, and this is a diagram in \mathcal{E} / X. So the map $\left\langle a, \chi_{g}\right\rangle$ classifies the mono g in \mathcal{E} / X. Uniqueness is left to you.
Exercise 3. Let $U C l$ be the set of universal closure operations on \mathcal{E}, and let $L T$ be the set of Lawvere-Tierney topologies on \mathcal{E}. We define operations $\Phi: U C l \rightarrow L T$ and $\Psi: L T \rightarrow U C l$ as follows:
for a universal closure operation $c_{(\cdot)}, \Phi\left(c_{(\cdot)}\right)=j$, where j classifies $c_{\Omega}(1 \xrightarrow{t}$ Ω).
for a Lawvere-Tierney topology j we define $\Psi(j)=c_{(\cdot)}$, where, if $M \in$ $\operatorname{Sub}(X)$ is classified by $\chi: X \rightarrow \Omega, c_{X}(M)$ is classified by $j \chi$.
I show first that the pair Φ, Ψ gives a 1-1 correspondence. So, let $c_{(\cdot)}$ be a universal closure operation. For $M \in \operatorname{Sub}(X)$ classified by $\chi: X \rightarrow \Omega$, we have that $M=\chi^{*}(1 \xrightarrow{t} \Omega)$ and therefore, by stability of $c_{(\cdot)}, c_{X}(M)=\chi^{*}\left(c_{\Omega}(1 \xrightarrow{t}\right.$ $\Omega)$). If we denote the latter by $J \xrightarrow{a} \Omega$, then inspecting the diagram

we see that $c_{X}(M)$ is classified by $j \chi$. This shows that $\Psi \Phi\left(c_{(\cdot)}=c_{(\cdot)}\right.$.
In the other direction, if j is a Lawvere-Tierney topology and $c_{(\cdot)}=\Psi(j)$ then $c_{X}(M)$ is classified by $j \chi$ (if χ classifies M), and therefore $c_{\Omega}(1 \xrightarrow{t} \Omega)$ is classified by j. Hence $\Phi \Psi(j)=j$.

Of course, we must show that Φ and Ψ are well-defined: $\Phi\left(c_{(\cdot)}\right)$ is a LawvereTierney topology if $c_{(\cdot)}$ is a universal closure operation, and $\Psi(j)$ is a universal closure operation if j is a Lawvere-Tierney topology.

So, assume that $c_{(\cdot)}$ is a universal closure operation, and let j classify $c_{\Omega}(1 \xrightarrow{t}$ Ω), which we write as $J \xrightarrow{a} \Omega$. We check i)-iii) of Definition 1.42.
i) By i) of definition $1.43,(1 \xrightarrow{t} \Omega) \leq(J \xrightarrow{a} \Omega$, so we have a map $*: 1 \rightarrow J$ such that $a *=t$. Since 1 is terminal, $!*=\mathrm{id}_{1}$. Then $j t=t!*=t$, as desired.
ii) Since j classifies $c_{\Omega}(1 \xrightarrow{t} \Omega)$, $j j$ classifies $c_{\Omega}\left(c_{\Omega}(1 \xrightarrow{t} \Omega)\right.$. By iii) of Definition $1.43, j j=j$.
iii) Let M, N be subobjects of X, classified by ϕ, χ respectively. Then $j \circ \wedge$ $\circ\langle\phi, \chi\rangle$ classifies $c_{X}(M \cap N)$; and $\wedge \circ(j \times j)\langle\phi, \psi\rangle$ classifies $c_{X}(M) \cap c_{X}(N)$. By Exercise 28, these two are equal. So $j \circ \wedge=\wedge \circ(j \times j)$, which is requirement iii) of Definition 1.42.

Finally, assume that j is a Lawvere-Tierney topology, and $c_{(\cdot)}=\Psi(j)$. So, $c_{X}(M)$ is classified by $j \chi$, if M is classified by χ. Again, we write $J \xrightarrow{a} \Omega$ for $c_{\Omega}(1 \xrightarrow{t} \Omega)$. We check i)-iv) of Definition 1.43.
i) We have a pullback

Since $j t=t$ (requirement i) of Definition 1.42) we see that t factors through j, i.e. $(1 \xrightarrow{t} \Omega) \leq c_{\Omega}(1 \xrightarrow{t} \Omega)$ in $\operatorname{Sub}(\Omega)$. It follows that the inequality $M \leq c_{X}(M)$ always holds, since pullback functors $f^{*}: \operatorname{Sub}(\Omega) \rightarrow$ $\operatorname{Sub}(X)$ are order-preserving.
ii) Using iii) of Definition 1.42 we deduce that $c_{X}(M \cap N)=c_{X}(M) \cap c_{X}(N)$: let ϕ and χ classify M and N, respectively. Then $\wedge \circ\langle\phi, \psi\rangle$ classifies $M \cap N$ so $j \circ \wedge \circ\langle\phi, \chi\rangle$ classifies $c_{X}(M \cap N)$, whereas $\wedge \circ(j \times j) \circ\langle\phi, \psi\rangle$ classifies $c_{X}(M) \cap c_{X}(N)$. So equality must hold.
Now $M \leq N$ means $M=M \cap N$. This implies $c_{X}(M)=c_{X}(M \cap N)=$ $c_{X}(M) \cap c_{X}(N)$. So $c_{X}(M) \leq c_{X}(N)$, as desired.
iii) This follows straightforwardly from ii) of Definition 1.42.
iv) This is also straightforward, since if $f: Y \rightarrow X$ is any arrow and $M \in$ $\operatorname{Sub}(X)$ is classified by ϕ, then $f^{*}(M)$ is classified by ϕf. Hence $c_{Y}\left(f^{*} M\right)$ is classified by $j \phi f$; but this arrow also classifies $f^{*}\left(c_{X}(M)\right)$.

Exercise 4.a) Suppose A is closed as subobject of X. Then $c_{X}(A) \leq A$. By the adjunction $f^{*} \dashv \forall_{f}, f^{*} \forall_{f}(A) \leq A$, so by monotonicity of the closure operation, $c_{X}\left(f^{*} \forall_{f}(A)\right) \leq A$. Stability of the closure operation gives $f^{*}\left(c_{Y}\left(\forall_{f}(A)\right)\right) \leq A$. Finally, applying the adjunction once again, we get $c_{Y}\left(\forall_{f}(A)\right) \leq \forall_{f}(A)$ and we conclude that $\forall_{f}(A)$ is closed, as desired.
b) Defining $A \Rightarrow B$ as $\forall_{a}\left(a^{*} B\right)$ as in the hint (where a is a monomorphism into X which represents A), we have, for an arbitrary subobject C of A :

$$
\begin{array}{cc}
C \leq(A \Rightarrow B) & \Leftrightarrow \\
a^{*}(C) \leq a^{*}(B) & \Leftrightarrow \\
C \cap A \leq B \cap A & \Leftrightarrow \\
C \cap A \leq B &
\end{array}
$$

c) This follows at once from the construction of $A \Rightarrow B$ in the hint of part b), and part a) of the exercise: if B is closed, so is $a^{*}(B)$ by stability of the closure operation, and hence so is $\forall_{a}\left(a^{*}(B)\right)$ by part a).
Exercise 5.a) This follows at once from the fact that limits and colimits in $\widehat{\mathcal{C}}$ are calculated 'point-wise'.
b) We have $\operatorname{ev}_{C}\left(y_{D}\right)=y_{D}(C)=\mathcal{C}(C, D)=A(D)$, so the following diagram commutes:

Since, moreover, the functor ev_{C} preserves colimits by a), we have that ev_{C} is equal to the functor $(-) \otimes_{\mathcal{C}} A$. And this functor preserves finite limits by a), so A is flat, as desired.
c) Suppose $G:$ Set $\rightarrow \widehat{\mathcal{C}}$ is right adjoint to ev_{C}. Then by the Yoneda Lemma we calculate:

$$
\begin{aligned}
G(X)(D) & \simeq \widehat{\mathcal{C}}\left(y_{D}, G(X)\right) \\
& \simeq \operatorname{Set}\left(\operatorname{ev}_{C}\left(y_{D}\right), X\right) \\
& \simeq \operatorname{Set}(\mathcal{C}(C, D), X)
\end{aligned}
$$

Now it is easy to see that indeed the assignment $X \mapsto\left(D \mapsto X^{\mathcal{C}}(C, D)\right)$ defines a functor Set $\rightarrow \widehat{\mathcal{C}}$, which is right adjoint to ev_{C}.
d) We need to show that the functor ev_{C} also has a left adjoint. I claim that the functor F : Set $\rightarrow \mathcal{C}$ defined by

$$
F(X)=\sum_{x \in X} y_{C}
$$

(the functor which sends X to the coproduct of X many copies of y_{C}) does the job. Indeed, we calculate:

$$
\begin{aligned}
\widehat{\mathcal{C}}\left(\sum_{x \in X} y_{C}, P\right) & \simeq \prod_{x \in X} \widehat{\mathcal{C}}\left(y_{C}, P\right) \\
& \simeq \prod_{x \in X} P(C) \\
& \simeq \operatorname{Set}\left(X, \operatorname{ev}_{C}(P)\right)
\end{aligned}
$$

Exercise 6 The sentence "all formulas of the form (D) are always true in $X^{\prime \prime}$ means that for every subpresheaf A of X (interpreting the relation symbol A) and every subpresheaf B of 1 (interpreting the 0 -ary relation symbol, or propositional constant B), we have that $k \Vdash(D)$.

First, suppose the presheaf X is constant, so every map $X(k) \rightarrow X\left(k^{\prime}\right)$ is an identity (in Set). Suppose $k \in \mathcal{C}$. We need to prove that $k \Vdash(D)$, so assume $k^{\prime} \leq k$ is such that $k^{\prime} \Vdash \forall x(A(x) \vee B)$. We need to prove that $k^{\prime} \Vdash \forall x A(x) \vee B$. The assumption on k^{\prime} tells us that for all $k^{\prime \prime} \leq k^{\prime}$ and all $a \in X(k)=X\left(k^{\prime \prime}\right)$, we have $k^{\prime \prime} \Vdash A(a) \vee B$. In particular, $k^{\prime} \Vdash A(a) \vee B$. If $k^{\prime} \Vdash B$ then we are
done. If $k^{\prime} \Vdash B$, then we must have $k^{\prime} \Vdash A(a)$ for all $a \in X(k)$, but then by stability (downwards persistence) of \Vdash and the assumption that X is constant, we have $k^{\prime \prime} \Vdash A(a)$ for all $a \in X\left(k^{\prime \prime}\right)$, for every $k^{\prime \prime} \leq k^{\prime}$. But this means that $k^{\prime} \Vdash \forall x A(x)$ and hence $k^{\prime} \Vdash \forall x A(x) \vee B$, as required.

For the converse, we argue by contraposition so assume X is not constant. Fix k_{0}, k_{1} such that $k_{1}<k_{0}$ and $X\left(k_{0}\right)$ is a proper subset of $X\left(k_{1}\right)$. Define the subpresheaf A of X by: $A(k)=X\left(k_{0}\right)$ if $k \leq k_{0}$ (and $A(k)=\emptyset$ elsewhere).

Define the subpresheaf B of 1 (so, B is a downwards closed subset of \mathcal{C}) by: $k \in B$ if and only if $k \leq k_{0}$ and $X(k) \neq X\left(k_{0}\right)$.

Now for any $k \leq k_{0}$ we have: if it is not the case that for every $a \in X(k)$ we have $k \Vdash A(a)$, then $X(k)$ cannot be equal to $X\left(k_{0}\right)$. But then $k \Vdash B$. We conclude that $k_{0} \Vdash \forall x(A(x) \vee B)$. However, $k_{0} \Vdash \forall x A(x)$ since $k_{1} \Vdash \forall x A(x)$, and $k_{0} \Vdash B$ is evident. We conclude that $k_{0} \Vdash(D)$.

