## **Topos Theory**, Spring 2021 Hand-In Exercises

Jaap van Oosten

February–May 2021

## 1 Exercises

**Exercise 1 (Deadline: March 7)** Let C be a small category. Suppose  $\mathcal{R}$  is an operation that assigns, to each object C of C, a family  $\mathcal{R}(C)$  of sieves on C.

Given a presheaf X on C and a subobject A of X with classifying map  $\chi_A: X \to \Omega$ , we define a subobject  $\overline{A}$  of X by putting

$$\overline{A}(C) = \{ x \in X(C) \mid \chi_A(x) \in \mathcal{R}(C) \}$$

Prove that the operation  $A \mapsto \overline{A}$  is a universal closure operation on  $\widehat{\mathcal{C}}$  if and only if  $\mathcal{R}$  is a Grothendieck topology on  $\mathcal{C}$ .

**Exercise 2 (Deadline: March 21)** Let  $\mathcal{E}$  be a topos, X an object of  $\mathcal{E}$  and  $(A \xrightarrow{a} X)$  an object of the slice category  $\mathcal{E}/X$ .

- a) Show that there is a bijection between subobjects of  $(A \xrightarrow{a} X)$  in  $\mathcal{E}/X$ , and subobjects of A in  $\mathcal{E}$ .
- b) Show that the forgetful functor  $\mathcal{E}/X \to \mathcal{E}$ , which sends  $(A \xrightarrow{a} X)$  to A, preserves and reflects monomorphisms.
- c) Show that the diagram



(where  $p_1$  is the projection on the second coordinate, and t is the composition  $X \stackrel{!}{\to} 1 \stackrel{t}{\to} \Omega$ ) is a subobject classifier in  $\mathcal{E}/X$ .

**Exercise 3 (Deadline: April 4)** Give the details of the proof of Proposition 1.44, which says that there is a 1-1 correspondence between universal closure operations and Lawvere-Tierney topologies in a topos.

**Exercise 4 (Deadline: April 18)** Suppose  $\mathcal{E}$  is a topos, and  $\overline{(\cdot)}$  is a universal closure operation on  $\mathcal{E}$ .

For a morphism  $f: X \to Y$  in  $\mathcal{E}$  we let  $\forall_f : \operatorname{Sub}(X) \to \operatorname{Sub}(Y)$  be the restriction of the functor  $\prod_f : \mathcal{E}/X \to \mathcal{E}/Y$  to the subcategories  $\operatorname{Mon}/X$  and  $\operatorname{Mon}/Y$  of monos into X, Y respectively. We have  $f^* : \operatorname{Sub}(Y) \to \operatorname{Sub}(X)$  by pullback, and  $f^*$  is left adjoint to  $\forall_f$ .

- a) Prove: if  $A \in \text{Sub}(X)$  is closed in X, then  $\forall_f(A)$  is closed in Y.
- b) Prove that for every pair A, B of subobjects of X there exists a subobject  $A \Rightarrow B$  of X which satisfies, for each  $C \in \text{Sub}(X)$ :

 $C \leq (A \Rightarrow B)$  if and only if  $C \cap A \leq B$ 

Hint: if A is given by the mono  $a : A \to X$ , consider the subobject  $\forall_a(a^*(B))$ .

c) Show that for the subobject  $A \Rightarrow B$  of X of part b), we always have: if B is closed, then  $A \Rightarrow B$  is closed.

**Exercise 5 (Deadline: May 9)** We consider the presheaf topos  $\widehat{\mathcal{C}}$  for a small category  $\mathcal{C}$ ; let C be a fixed object of  $\mathcal{C}$ . Let  $ev_C : \widehat{\mathcal{C}} \to Set$  denote the functor which sends a presheaf X to X(C).

- a) Show that  $ev_C$  preserves all small limits and colimits.
- b) Let  $A : \mathcal{C} \to \text{Set}$  be the representable functor on C, i.e. the functor which sends an object D to the set  $\mathcal{C}(C, D)$ . Prove that A is flat.
- c) Give a concrete description of the functor  $G : \text{Set} \to \widehat{\mathcal{C}}$  which is right adjoint to  $\text{ev}_C$ .
- d) Show that the geometric morphism  $\text{Set} \to \widehat{\mathcal{C}}$  determined by the adjunction  $\text{ev}_C \dashv G$  is essential.

**Exercise 6 (Deadline: May 30)** Let C be a poset and X a presheaf on C with the property that for every inequality  $k' \leq k$  in C, the map  $X(k) \to X(k')$  is an inclusion of sets. We consider interpretations of a 1-sorted language where X is the interpretation of the unique sort. We study formulas of the form

 $(D) \qquad \forall x(A(x) \lor B) \to (\forall xA(x) \lor B)$ 

where A and B are arbitrary formulas, but the formula B does not contain the variable x free.

Prove that all formulas of the form (D) are always true in X, precisely when X is a constant presheaf.

## 2 Solutions

**Exercise 1** Some notations, which occur also in the lecture notes: for a presheaf X on a category C, an arrow  $f: C' \to C$  and an element  $x \in X(C)$  we write xf or X(f)(x) for the action of X on f and x. If R is a sieve on C we write  $f^*R$  for the set  $\{g \in C_1 | \operatorname{cod}(g) = C', fg \in R\}$ . So if we regard R as element of  $\Omega(C)$  then  $f^*R = Rf = \Omega(f)(R)$ . We write  $\max(C)$  for the maximal sieve on C.

We start with some simple remarks:

1. For a sieve R on C, we have  $R = \max(C)$  if and only if  $id_C \in R$ .

2. For a sieve R on C and  $f: C' \to C$ , we have  $f^*R = \max(C')$  if and only if  $f \in R$ .

3. Let T be the subobject of  $\Omega$  which is represented by the mono  $1 \xrightarrow{t} \Omega$ . Then T is classified by the identity on  $\Omega$ :  $\chi_T = \mathrm{id}_{\Omega}$ .

First, let us assume that the operation  $A \mapsto \overline{A}$  is a universal closure operation. For the subobject T of  $\Omega$  defined in remark 3., we have  $\overline{T}(C) = \{R \in \Omega(C) \mid (\chi_T)_C(R) \in \mathcal{R}(C)\} = \mathcal{R}(C)$  (by remark 2.). Since  $\overline{T}$  is a presheaf, we must have that if  $R \in \mathcal{R}(C)$  and  $f : C' \to C$  then  $f^*R \in \mathcal{R}(C')$ , which is the second requirement ("stability") for  $\mathcal{R}$  to be a Grothendieck topology.

Since  $T \subseteq \overline{T}$  we must have  $\max(C) \in \mathcal{R}(C)$ , which is the second requirement.

Now let us consider a sieve S on C as subobject of the representable presheaf  $y_C$ . It is classified by the map  $\chi_S : y_C \to \Omega$  which sends  $f : C' \to C$  to  $f^*S$ . Now for the closure  $\overline{S} \subseteq y_C$  we have

$$\overline{S}(C') = \{f: C' \to C \mid (\chi_S)_{C'}(f) \in \mathcal{R}(C')\} \\ = \{f: C' \to C \mid f^*S \in \mathcal{R}(C')\}$$

From this, using remarks 1. and 3., we deduce that  $S \in \mathcal{R}(C)$  if and only if  $\overline{S} = y_C$ . Now we see that if R and S are sieves on C and  $R \in \mathcal{R}(C)$ , then also  $S \in \mathcal{R}(C)$ ; for, we have  $y_C = \overline{R} \subseteq \overline{S}$ . It remains to prove local character for  $\mathcal{R}$ . So suppose R is a sieve on  $C, S \in \mathcal{R}(C)$  and for all  $g : C' \to C$  in S we have  $g^*R \in \mathcal{R}(C')$ . We need to see that  $R \in \mathcal{R}(C)$ .

The classifying map  $\chi_{\mathcal{R}}$  for  $\mathcal{R}$  as subobject of  $\Omega$  sends  $R \in \Omega(C)$  to the sieve  $\{g: C' \to C \mid g^*R \in \mathcal{R}(C')\}$ . So,

$$\begin{aligned} \overline{\mathcal{R}}(C) &= \{ R \in \Omega(C) \, | \, (\chi_{\mathcal{R}})_C(R) \in \mathcal{R}(C) \} \\ &= \{ R \in \Omega(C) \, | \, \{ g : C' \to C \, | \, g^*R \in \mathcal{R}(C') \} \in \mathcal{R}(C) \} \end{aligned}$$

Hence, our assumptions on R and S imply that  $S \subseteq (\chi_{\mathcal{R}})_C(R)$ . Since  $S \in \mathcal{R}(C)$ , we have  $(\chi_{\mathcal{R}})_C(R) \in \mathcal{R}(C)$ , which means that  $R \in \overline{\mathcal{R}}(C)$ . Now  $\overline{\mathcal{R}} = \overline{\overline{T}} = \overline{T} = \mathcal{R}$ , so  $R \in \overline{\mathcal{R}}(C)$ , as desired. We conclude that  $\mathcal{R}$  is a Grothendieck topology.

Conversely, assume that  $\mathcal{R}$  is a Grothendieck topology, so it satisfies conditions i), ii) ("stability") and iii) ("local character") of Definition 0.16. We define the operation  $A \mapsto \overline{A}$  as in the exercise, and prove that this is a universal closure operation. We check the conditions of Definition 0.18.

First we see that if R, S are sieves on C, with  $R \subseteq S$  and  $R \in \mathcal{R}(C)$ , then  $S \in \mathcal{R}(C)$ . This follows from i) and iii) of 0.16, since for each  $f : C' \to C$  in R,  $f^*S = \max(C')$ .

Since  $\max(C) \in \mathcal{R}(C)$ , we see at once that  $A \subseteq \overline{A}$ , which is requirement i) of 0.18.

If  $A \subseteq B$  for subobjects A, B of X, then  $(\chi_A)_C(x) \subseteq (\chi_B)_C(x)$  always, and hence  $\overline{A}(C) \subseteq \overline{B}(C)$ , which is iii) of 0.18.

Condition iv) of 0.18 follows from stability of  $\mathcal{R}$ .

Finally, in order to prove condition ii), we calculate:

$$\overline{A}(C) = \{x \in X(C) \mid (\chi_{\overline{A}})_C(x) \in \mathcal{R}(C)\} \\ = \{x \in X(C) \mid \{g : C' \to C \mid (\chi_A)_{C'}(xg) \in \mathcal{R}(C')\} \in \mathcal{R}(C)\}$$

Suppose  $x \in \overline{\overline{A}}(C)$ . Then  $(\chi_{\overline{A}})_C(x) \in \mathcal{R}(C)$ , and for any element g of this sieve we have:  $g^*((\chi_A)_C(x)) = (\chi_A)_{C'}(xg)$ , which is an element of  $\mathcal{R}(C')$ . By local character of  $\mathcal{R}$  we conclude  $(\chi_A)_C(x) \in \mathcal{R}(C)$ , which means  $x \in \overline{A}(C)$ . So  $\overline{\overline{A}} = \overline{A}$  and we are done.

**Exercise 2.** It seems best to start with part b). Let  $\sum_X : \mathcal{E}/X \to \mathcal{E}$  denote the forgetful functor. Let  $f : (B \xrightarrow{b} X) \to (A \xrightarrow{a} X)$  be an arrow in  $\mathcal{E}/X$ . Suppose  $\sum_X (f)$ , which is  $f : B \to A$ , is mono in  $\mathcal{E}$  and suppose g, h are arrows  $(C \xrightarrow{c} X) \to (B \xrightarrow{b} X)$  sauch that fg = fh. Then since f is mono in  $\mathcal{E}$  we have g = h in  $\mathcal{E}$ , but then also g = h in  $\mathcal{E}/X$ . So  $\sum_X$  reflects monos. Now if f is mono in  $\mathcal{E}/X$  and fg = fh in  $\mathcal{E}$ , for a parallel pair  $g, h : C \to B$ , then we have  $bg = afg = afh = bh : C \to X$ , so for c = bg = bh we have that g, h are arrows  $(C \xrightarrow{c} X) \to (B \xrightarrow{b} X)$ , so since f is mono in  $\mathcal{E}/X, g = h$ . So f is mono in  $\mathcal{E}$  and  $\sum_X$  preserves monos, as claimed.

For a), we define a bijection between monos to  $A \stackrel{a}{\to} X$  in  $\mathcal{E}/X$  and monos to A in  $\mathcal{E}$ . For a mono  $f : (B \stackrel{b}{\to} X) \to (A \stackrel{a}{\to} X)$  let  $\phi(f) = f : B \to A$ . For a mono  $g : B \to A$  in  $\mathcal{E}$ , let  $\chi(g) = g : (B \stackrel{ag}{\to} X) \to (A \stackrel{a}{\to} X)$ . It is immediate that  $\phi\chi(g) = g$  and  $\chi\phi(f) = f$ . Moreover,  $\phi(f)$  in mono since  $\sum_X$  preserves monos, and  $\chi(g)$  is mono since  $\sum_X$  reflects monos.

Then, we should show that for monos  $f : B \to A$  and  $f' : B' \to A$  in  $\mathcal{E}$ we have: f factors through f' (in which case the subobject represented by f is  $\leq$  the subobject represented by f') if and only if  $\chi(f)$  factors through  $\chi(f')$  in  $\mathcal{E}/X$ . This is evident.

c) Given a mono  $g: (B \xrightarrow{b} X) \to (A \xrightarrow{a} X)$  is mono in  $\mathcal{E}/X$ , by b) we know that g is mono in  $\mathcal{E}$ ; let  $\chi_g: A \to \Omega$  its classifying map. We have a pullback diagram



in  $\mathcal{E}$ . It is left to you to show that the diagram

is also a pullback diagram in  $\mathcal{E}$ , and this is a diagram in  $\mathcal{E}/X$ . So the map  $\langle a, \chi_g \rangle$  classifies the mono g in  $\mathcal{E}/X$ . Uniqueness is left to you.

**Exercise 3.** Let UCl be the set of universal closure operations on  $\mathcal{E}$ , and let LT be the set of Lawvere-Tierney topologies on  $\mathcal{E}$ . We define operations  $\Phi: UCl \to LT$  and  $\Psi: LT \to UCl$  as follows:

for a universal closure operation  $c_{(\cdot)}$ ,  $\Phi(c_{(\cdot)}) = j$ , where j classifies  $c_{\Omega}(1 \rightarrow \Omega)$ .

for a Lawvere-Tierney topology j we define  $\Psi(j) = c_{(\cdot)}$ , where, if  $M \in \text{Sub}(X)$  is classified by  $\chi: X \to \Omega$ ,  $c_X(M)$  is classified by  $j\chi$ .

I show first that the pair  $\Phi, \Psi$  gives a 1-1 correspondence. So, let  $c_{(.)}$  be a universal closure operation. For  $M \in \text{Sub}(X)$  classified by  $\chi : X \to \Omega$ , we have that  $M = \chi^*(1 \xrightarrow{t} \Omega)$  and therefore, by stability of  $c_{(.)}, c_X(M) = \chi^*(c_{\Omega}(1 \xrightarrow{t} \Omega))$ . If we denote the latter by  $J \xrightarrow{a} \Omega$ , then inspecting the diagram



we see that  $c_X(M)$  is classified by  $j\chi$ . This shows that  $\Psi\Phi(c_{(\cdot)} = c_{(\cdot)})$ .

In the other direction, if j is a Lawvere-Tierney topology and  $c_{(\cdot)} = \Psi(j)$ then  $c_X(M)$  is classified by  $j\chi$  (if  $\chi$  classifies M), and therefore  $c_{\Omega}(1 \xrightarrow{t} \Omega)$  is classified by j. Hence  $\Phi \Psi(j) = j$ .

Of course, we must show that  $\Phi$  and  $\Psi$  are well-defined:  $\Phi(c_{(\cdot)})$  is a Lawvere-Tierney topology if  $c_{(\cdot)}$  is a universal closure operation, and  $\Psi(j)$  is a universal closure operation if j is a Lawvere-Tierney topology.

So, assume that  $c_{(.)}$  is a universal closure operation, and let j classify  $c_{\Omega}(1 \rightarrow \Omega)$ , which we write as  $J \stackrel{a}{\rightarrow} \Omega$ . We check i)–iii) of Definition 1.42.

- i) By i) of definition 1.43,  $(1 \stackrel{t}{\to} \Omega) \leq (J \stackrel{a}{\to} \Omega)$ , so we have a map  $*: 1 \to J$  such that  $a^* = t$ . Since 1 is terminal,  $!* = \mathrm{id}_1$ . Then jt = t!\* = t, as desired.
- ii) Since j classifies  $c_{\Omega}(1 \xrightarrow{t} \Omega)$ , jj classifies  $c_{\Omega}(c_{\Omega}(1 \xrightarrow{t} \Omega))$ . By iii) of Definition 1.43, jj = j.

iii) Let M, N be subobjects of X, classified by  $\phi, \chi$  respectively. Then  $j \circ \land \circ \langle \phi, \chi \rangle$  classifies  $c_X(M \cap N)$ ; and  $\land \circ (j \times j) \langle \phi, \psi \rangle$  classifies  $c_X(M) \cap c_X(N)$ . By Exercise 28, these two are equal. So  $j \circ \land = \land \circ (j \times j)$ , which is requirement iii) of Definition 1.42.

Finally, assume that j is a Lawvere-Tierney topology, and  $c_{(\cdot)} = \Psi(j)$ . So,  $c_X(M)$  is classified by  $j\chi$ , if M is classified by  $\chi$ . Again, we write  $J \xrightarrow{a} \Omega$  for  $c_{\Omega}(1 \xrightarrow{t} \Omega)$ . We check i)-iv) of Definition 1.43.

i) We have a pullback



Since jt = t (requirement i) of Definition 1.42) we see that t factors through j, i.e.  $(1 \xrightarrow{t} \Omega) \leq c_{\Omega}(1 \xrightarrow{t} \Omega)$  in  $\operatorname{Sub}(\Omega)$ . It follows that the inequality  $M \leq c_X(M)$  always holds, since pullback functors  $f^* : \operatorname{Sub}(\Omega) \to$  $\operatorname{Sub}(X)$  are order-preserving.

ii) Using iii) of Definition 1.42 we deduce that  $c_X(M \cap N) = c_X(M) \cap c_X(N)$ : let  $\phi$  and  $\chi$  classify M and N, respectively. Then  $\wedge \circ \langle \phi, \psi \rangle$  classifies  $M \cap N$ so  $j \circ \wedge \circ \langle \phi, \chi \rangle$  classifies  $c_X(M \cap N)$ , whereas  $\wedge \circ (j \times j) \circ \langle \phi, \psi \rangle$  classifies  $c_X(M) \cap c_X(N)$ . So equality must hold.

Now  $M \leq N$  means  $M = M \cap N$ . This implies  $c_X(M) = c_X(M \cap N) = c_X(M) \cap c_X(N)$ . So  $c_X(M) \leq c_X(N)$ , as desired.

- iii) This follows straightforwardly from ii) of Definition 1.42.
- iv) This is also straightforward, since if  $f: Y \to X$  is any arrow and  $M \in$ Sub(X) is classified by  $\phi$ , then  $f^*(M)$  is classified by  $\phi f$ . Hence  $c_Y(f^*M)$  is classified by  $j\phi f$ ; but this arrow also classifies  $f^*(c_X(M))$ .

**Exercise 4.**a) Suppose A is closed as subobject of X. Then  $c_X(A) \leq A$ . By the adjunction  $f^* \dashv \forall_f, f^* \forall_f(A) \leq A$ , so by monotonicity of the closure operation,  $c_X(f^* \forall_f(A)) \leq A$ . Stability of the closure operation gives  $f^*(c_Y(\forall_f(A))) \leq A$ . Finally, applying the adjunction once again, we get  $c_Y(\forall_f(A)) \leq \forall_f(A)$  and we conclude that  $\forall_f(A)$  is closed, as desired.

b) Defining  $A \Rightarrow B$  as  $\forall_a(a^*B)$  as in the hint (where *a* is a monomorphism into *X* which represents *A*), we have, for an arbitrary subobject *C* of *A*:

$$\begin{array}{ll} C \leq (A \Rightarrow B) & \Leftrightarrow \\ a^*(C) \leq a^*(B) & \Leftrightarrow \\ C \cap A \leq B \cap A & \Leftrightarrow \\ C \cap A < B \end{array}$$

c) This follows at once from the construction of  $A \Rightarrow B$  in the hint of part b), and part a) of the exercise: if B is closed, so is  $a^*(B)$  by stability of the closure operation, and hence so is  $\forall_a(a^*(B))$  by part a).

**Exercise 5.**a) This follows at once from the fact that limits and colimits in  $\widehat{C}$  are calculated 'point-wise'.

b) We have  $ev_C(y_D) = y_D(C) = C(C, D) = A(D)$ , so the following diagram commutes:



Since, moreover, the functor  $ev_C$  preserves colimits by a), we have that  $ev_C$  is equal to the functor  $(-) \otimes_C A$ . And this functor preserves finite limits by a), so A is flat, as desired.

c) Suppose  $G : \text{Set} \to \widehat{\mathcal{C}}$  is right adjoint to  $\text{ev}_C$ . Then by the Yoneda Lemma we calculate:

$$\begin{array}{rcl} G(X)(D) &\simeq & \widehat{\mathcal{C}}(y_D, G(X)) \\ &\simeq & \operatorname{Set}(\operatorname{ev}_C(y_D), X) \\ &\simeq & \operatorname{Set}(\mathcal{C}(C, D), X) \end{array}$$

Now it is easy to see that indeed the assignment  $X \mapsto (D \mapsto X^{\mathcal{C}(C,D)})$  defines a functor Set  $\to \widehat{\mathcal{C}}$ , which is right adjoint to  $ev_C$ .

d) We need to show that the functor  $ev_C$  also has a left adjoint. I claim that the functor  $F : Set \to C$  defined by

$$F(X) = \sum_{x \in X} y_C$$

(the functor which sends X to the coproduct of X many copies of  $y_C$ ) does the job. Indeed, we calculate:

$$\widehat{\mathcal{C}}(\sum_{x \in X} y_C, P) \simeq \prod_{x \in X} \widehat{\mathcal{C}}(y_C, P) \\
\simeq \prod_{x \in X} P(C) \\
\simeq \operatorname{Set}(X, \operatorname{ev}_C(P))$$

**Exercise 6** The sentence "all formulas of the form (D) are always true in X" means that for every subpresheaf A of X (interpreting the relation symbol A) and every subpresheaf B of 1 (interpreting the 0-ary relation symbol, or propositional constant B), we have that  $k \Vdash (D)$ .

First, suppose the presheaf X is constant, so every map  $X(k) \to X(k')$  is an identity (in Set). Suppose  $k \in \mathcal{C}$ . We need to prove that  $k \Vdash (D)$ , so assume  $k' \leq k$  is such that  $k' \Vdash \forall x(A(x) \lor B)$ . We need to prove that  $k' \Vdash \forall xA(x) \lor B$ . The assumption on k' tells us that for all  $k'' \leq k'$  and all  $a \in X(k) = X(k'')$ , we have  $k'' \Vdash A(a) \lor B$ . In particular,  $k' \Vdash A(a) \lor B$ . If  $k' \Vdash B$  then we are done. If  $k' \not\models B$ , then we must have  $k' \models A(a)$  for all  $a \in X(k)$ , but then by stability (downwards persistence) of  $\Vdash$  and the assumption that X is constant, we have  $k'' \models A(a)$  for all  $a \in X(k'')$ , for every  $k'' \leq k'$ . But this means that  $k' \models \forall x A(x)$  and hence  $k' \models \forall x A(x) \lor B$ , as required.

For the converse, we argue by contraposition so assume X is not constant. Fix  $k_0, k_1$  such that  $k_1 < k_0$  and  $X(k_0)$  is a proper subset of  $X(k_1)$ . Define the subpresheaf A of X by:  $A(k) = X(k_0)$  if  $k \leq k_0$  (and  $A(k) = \emptyset$  elsewhere).

Define the subpresheaf B of 1 (so, B is a downwards closed subset of C) by:  $k \in B$  if and only if  $k \leq k_0$  and  $X(k) \neq X(k_0)$ .

Now for any  $k \leq k_0$  we have: if it is not the case that for every  $a \in X(k)$  we have  $k \Vdash A(a)$ , then X(k) cannot be equal to  $X(k_0)$ . But then  $k \Vdash B$ . We conclude that  $k_0 \Vdash \forall x(A(x) \lor B)$ . However,  $k_0 \nvDash \forall xA(x)$  since  $k_1 \nvDash \forall xA(x)$ , and  $k_0 \nvDash B$  is evident. We conclude that  $k_0 \nvDash (D)$ .