## **Topos Theory**, Spring 2022 Hand-In Exercises

Jaap van Oosten

February–May 2022

## 1 Exercises

**Exercise 1 (Deadline: March 3)** Let  $\mathcal{E}$  be a topos, X an object of  $\mathcal{E}$  and  $A \xrightarrow{m} X$  a subobject of X such that the classifying map  $\chi_A : X \to \Omega$  is monic.

- a) (3 pts) Show that the unique map  $!: A \to 1$  is monic.
- b) (3 pts) Suppose for a pair of maps  $f,g:Y\to X$  there is a subobject  $B\to Y$  such that both squares



are pullbacks. Show that f = g.

c) (2+2 pts) We call a category *well-powered* if for every object, its collection of subobjects is a set. As you know, a category is *locally small* if for every pair Y, X of objects, the collection of arrows  $Y \to X$  is a set.

Prove that a topos is well-powered if and only if it is locally small.

[Hint: use Exercise 1 of the lecture notes]

**Exercise 2 (Deadline: March 17)** Let  $\mathcal{E}$  be a category with finite limits. For  $X \in \mathcal{E}$  and a subobject U of X, we define a map from U to Y (where  $Y \in \mathcal{E}$ ) to be an equivalence class of diagrams  $X \xleftarrow{m} Z \xrightarrow{f} Y$  where m is a representative of U; two such diagrams (m, f) and (m', f') see equivalent if there is an isomorphism  $\sigma: Z \to Z'$  satisfying  $m'\sigma = m$  and  $f'\sigma = f$ .

Now, we define a *partial map*  $f: X \rightarrow Y$  as a map from U to Y where U is a subobject of X.

a) (3 pts) Show that there is a category  $\mathcal{E}_p$  with the same objects as  $\mathcal{E}$ , but with partial maps as arrows.

- b) (3 pts) Show that there is a functor  $I : \mathcal{E} \to \mathcal{E}_p$  which is the identity on objects.
- c) (4 pts) Show that in  $\mathcal{E}$ , partial maps are representable if and only if the functor I of part b) has a right adjoint.

**Exercise 3 (Deadline: April 4)** Call an object A of a locally small category  $\mathcal{C}$  connected if the representable functor  $\mathcal{C}(A, -) : \mathcal{C} \to \text{Set}$  preserves finite coproducts. From now on, we work in a topos  $\mathcal{E}$  and we assume a geometric morphism  $f = (f^* \dashv f_*) : \mathcal{E} \to \text{Set}$ .

- a) (3 pts) An object A is connected if and only if A is non-initial and A is not a coproduct of two non-initial subobjects.
- b) (2 pts) Suppose the inverse image functor  $f^* : \text{Set} \to \mathcal{E}$  has a left adjoint  $f_!$ . Prove that an object A of  $\mathcal{E}$  is connected precisely if  $f_!(A) \simeq 1$ .
- c) (2 pts) Let  $\begin{array}{c} X \xrightarrow{g} f^*(A) \\ \downarrow & \downarrow f^*(m) \end{array}$  be a pullback diagram in  $\mathcal{E}$ . Prove that  $Y \xrightarrow{h} f^*(B)$

the transposed diagram:

$$f_!(X) \xrightarrow{g} A$$

$$f_!(n) \downarrow \qquad \qquad \downarrow^n$$

$$f_!(Y) \xrightarrow{\tilde{h}} B$$

is a pullback diagram in Set. [Hint: in Set, every object is a coproduct of copies of 1]

d) (3 pts) We still assume the existence of the left adjoint  $f_!$ . Prove that in  $\mathcal{E}$ , every object is a coproduct of connected objects. [Hint: for an object A of  $\mathcal{E}$  and element  $s \in f_!(A)$ , regarded as arrow  $1 \to f_!(A)$  in Set, consider the pullback diagram

$$\begin{array}{c} U_s & \stackrel{p}{\longrightarrow} f^*(1) \\ q \downarrow & \downarrow f^*(s) \\ A & \stackrel{p}{\longrightarrow} f^* f_!(A) \end{array}$$

where  $\eta$  is the unit of the adjunction  $f_! \dashv f^*$ ]

**Exercise 4 (Deadline: April 18)** We are working in a topos  $\mathcal{E}$  with a Lawvere-Tierney topology (and associated universal closure operation).

a) Suppose



is a pullback square with m, n mono and g epi. Show: M is closed in X if and only if N is closed in Y.

- b) Suppose that R is an equivalence relation on X and  $R \xrightarrow{\longrightarrow} X \xrightarrow{\longrightarrow} M$  is a coequalizer diagram. Show that M is separated if and only if the mono  $R \rightarrow X \times X$  is closed.
- **Exercise 5 (Deadline: May 19)** a) (3 pts) Let  $F : \mathcal{C} \to \mathcal{D}$  be a functor between cartesian closed categories; suppose F has a left adjoint L. Show that F is a cartesian closed functor (i.e., preserves finite products and exponentials) if and only if the natural morphism

$$\langle L\pi_0, \varepsilon_A L\pi_1 \rangle : L(B \times FA) \to LB \times A$$

is an isomorphism for all  $A \in \mathcal{C}$ ,  $B \in \mathcal{D}$  (here,  $\varepsilon$  is the counit of  $L \dashv F$ , and  $\pi_0, \pi_1$  are projections).

- b) (2 pts) Let F and L be as in a). Show that if F is cartesian closed and L preserves 1, then F is full and faithful.
- c) (3 pts) Let again F and L be as in a). Show: if F is full and faithful and L preserves binary products, then F is cartesian closed.
- d) (2 pts) Let  $f : \mathcal{F} \to \mathcal{E}$  be a geometric morphism between toposes. Show that f is an inclusion if and only if  $f_*$  is cartesian closed.

**Exercise 6 (Deadline: June 2)** Let C be the following preorder:



- a) (5 pts) Show that the presheaf category  $\operatorname{Set}^{\mathcal{C}^{\operatorname{op}}}$  is a classifying topos for "pairs of subobjects of 1".
- b) (5 pts) Give a Grothendieck topology J on C such that Sh(C, J) is a classifying topos for "complemented subobjects of 1" (recall that a subobject A of an object X is complemented if there is a subobject B of X such that  $A \cup B = X$  and  $A \cap B = 0$ ).

## 2 Solutions

**Exercise 1**. Part a): since  $\chi_A$  is monic, the composition  $\chi_A \circ m = t \circ !$  is monic; so ! is monic.

Part b): the subobject  $B \to Y$  is classified by both  $\chi_A \circ f$  and  $\chi_A \circ g$ ; by uniqueness of classifying maps,  $\chi_A \circ f = \chi_A \circ g$ ; since  $\chi_A$  is monic, f = g.

Part c): by Exercise 1 of the lecture notes, the map  $\mathcal{E}(X,Y) \to \operatorname{Sub}(Y \times X)$ which sends an arrow  $f: X \to Y$  in  $\mathcal{E}$  to the graph of f as subobject of  $Y \times X$ , is injective. So if  $\mathcal{E}$  is well-powered, then  $\operatorname{Sub}(Y \times X)$  is a set, so  $\mathcal{E}(X,Y)$  is a set; so  $\mathcal{E}$  is locally small.

For the converse, if  $\mathcal{E}$  is locally small then  $\operatorname{Sub}(X)$ , which is in bijective correspondence with  $\mathcal{E}(X, \Omega)$ , must be a set; so  $\mathcal{E}$  is well-powered.

**Exercise 2**. Part a): we have to show that there are identities and a well-defined notion of composition on partial maps, which make  $\mathcal{E}_p$  a category.

Given representatives  $(X \xleftarrow{m} Z \xrightarrow{f} Y)$  and  $(Y \xleftarrow{n} W \xrightarrow{g} Z)$  of partial maps  $f: X \rightarrow Y, g: Y \rightarrow Z$  respectively, let



be a pullback. Let the composition  $gf: X \to Z$  be represented by  $(X \xleftarrow{mv} V \xrightarrow{g\phi} Z)$ . It is easy to see that this is well-defined: if  $(X \xleftarrow{m'} Z' \xrightarrow{f'} Y)$  and  $(Y \xleftarrow{n'} W' \xrightarrow{g'} Z)$  are other representatives of the same partial maps, then there are appropriate isomorphisms  $\sigma: Z \to Z'$  and  $\tau: W \to W'$  which ensure that the pullback diagrams defining the composition will be isomorphic.

For the identity  $\operatorname{id} : X \rightharpoonup X$  we take the diagram  $(X \xleftarrow{\operatorname{id}} X \xrightarrow{\operatorname{id}} X)$ . If  $(X \xleftarrow{v} W \xrightarrow{g} Z)$  represents a partial map  $g : X \rightharpoonup Z$  then by the above definition, goid is represented by  $(X \xleftarrow{v} V \xrightarrow{g\phi} Z)$  where

$$V \xrightarrow{v} X$$

$$\phi \downarrow \qquad \qquad \downarrow \text{id}$$

$$W \xrightarrow{n} X$$

is a pullback. We see that  $\phi$  is an isomorphism and that modulo this isomorphism, n = v; so  $g \circ id = g$  as partial maps  $X \rightharpoonup Z$ . The other identity law is, of course, similar.

It remains to prove that composition is associative; I do this sketchily. We

have a diagram

$$\begin{array}{c} Z \xrightarrow{m} X \\ \downarrow f \\ W \xrightarrow{n} Y \\ \downarrow g \\ K \xrightarrow{o} Z \\ h \\ L \end{array}$$

and clearly, in order to define the compositions f(gh) and (fg)h, one needs to "fill out" the upper left hand part of this by taking appropriate pullbacks:



Clearly, for both pullbacks there is an isomorphism between the vertices which commutes with the vertical and horizontal "legs" of the diagram.

Part b): define I(X) = X; for  $f: X \to Y$  in  $\mathcal{E}$  let  $I(f): X \to Y$  be represented by the diagram  $(X \xleftarrow{\text{id}} X \xrightarrow{f} Y)$ . Now obviously, I preserves identities; that I preserves composition is left to you.

Part c): if  $\tilde{X}$  represents partial maps into X (for  $X \in \mathcal{E}$ ) then there is a natural 1-1 correspondence between partial maps  $Y \rightharpoonup X$  and morphisms  $Y \rightarrow \tilde{X}$ ; that is, between  $\mathcal{E}_p(I(Y), X)$  and  $\mathcal{E}(Y, \tilde{X})$ . So the adjunction is clear once we see that  $\widetilde{(\cdot)}$  is a functor.

Given an arrow  $X \rightharpoonup Y$  in  $\mathcal{E}_p$ , represented by  $(X \xleftarrow{m} Z \xrightarrow{f} Y)$ , let  $\tilde{f}$  be the morphism  $\tilde{X} \rightarrow \tilde{Y}$  which represents the partial map

$$\begin{array}{c} Z \xrightarrow{f} Y \\ \eta_X m \\ \downarrow \end{array}$$

Here,  $\eta_X : X \to \tilde{X}$  is the universal arrow which belongs to the partial map classifier structure.

**Exercise 3.** Part a): If A is connected then  $\mathcal{E}(A, 0)$  must be initial in Set (since  $\mathcal{E}(A, -)$  preserves the empty coproduct), so A is non-initial in  $\mathcal{E}$ . If  $A = B \sqcup C$ 

with B and C non-initial then  $\mathcal{E}(A, A) \simeq \mathcal{E}(A, B) \sqcup \mathcal{E}(A, C)$ , so the identity on A factors through a proper subobject of A, which is impossible.

Conversely, suppose A is non-initial and not a coproduct of two non-initial subobjects. Since 0 is strict in any topos,  $\mathcal{E}(A,0) = \emptyset$ . Consider a map  $f : A \to B \sqcup C$ . If f does not factor through either B or C then  $f^{-1}B$  and  $f^{-1}C$  are non-initial and  $A = f^{-1}B \sqcup f^{-1}C$ ; contradicting the assumption on A. We conclude that  $\mathcal{E}(A, -)$  preserves finite coproducts.

Part b): first, let us remark that  $\mathcal{E}(A,0) \simeq \mathcal{E}(A, f^*(\emptyset) \simeq \text{Set}(f_!A, \emptyset)$ , so A is non-initial precisely when  $f_!A$  is nonempty.

Suppose  $f_!A = 1$ . Then A is non-initial by the remark; moreover, if  $A = B \sqcup C$  with B and C non-initial, then  $1 \simeq f_!B \sqcup f_!C$  so 1 is a coproduct of two nonempty sets; this contradiction shows that A is connected.

Conversely, suppose A is connected. Then  $f_!A$  is nonempty by the remark. Moreover, we have a chain of equalities (using, in turn, the adjunction  $f_! \dashv f^*$ , the fact that  $f^*$  preserves 1 and coproducts, and the assumption that A is connected):

$$2^{|f_!A|} = |\operatorname{Set}(f_!A, 1+1)| = |\mathcal{E}(A, f^*(1+1))| = |\mathcal{E}(A, 1+1)| = |\mathcal{E}(A, 1)| + |\mathcal{E}(A, 1)| = 2$$

so  $|f_!A| = 1$  and hence  $f_!A \simeq 1$ .

Part c): consider the commutative diagram

$$\begin{array}{ccc} X & \stackrel{g}{\longrightarrow} f^*A \\ (*) & n \\ & \downarrow \\ & Y & \stackrel{f^*m}{\longrightarrow} f^*B \end{array} \quad \text{for a map of sets } m: A \to B \\ \end{array}$$

By the hint, B is a coproduct  $\bigsqcup_{b\in B} 1$  so  $f^*B = \bigsqcup_{b\in B} 1$ . Similarly,  $f^*A = \bigsqcup_{a\in A} 1$  and  $f^*m$  sends the a-th summand of  $f^*A$  into the f(a)-th summand of  $f^*B$ .

Since coproducts are preserved by pullback functors, we have that Y is isomorphic to a coproduct  $\bigsqcup_{b \in B} Y_b$  and likewise, X is a coproduct  $\bigsqcup_{b \in B} X_b$ . For each  $b \in B$  we have a pullback square



Now the diagram (\*) is a pullback precisely when for each  $b \in B$ , the object  $X_b$  is a coproduct of  $|n^{-1}(b)|$  many isomorphic copies of  $Y_b$ . But if this is the case, then this is preserved by the functor  $f_!$ . Hence the transposed diagram is a pullback in Set.

Part d): we follow the hint. Let  $A \in \mathcal{E}$ ,  $s \in f_!A$ , and

$$\begin{array}{c} U_s & \stackrel{p}{\longrightarrow} f^*(1) \\ q \\ \downarrow & \downarrow \\ A & \stackrel{q}{\longrightarrow} f^*f_!(A) \end{array} \text{ be a pullback in } \mathcal{E}$$

By part c), the transposed diagram

$$\begin{array}{c} f_!(U_s) \xrightarrow{\tilde{p}} 1 \\ f_!(q) \downarrow \qquad \qquad \downarrow s \quad \text{is a pullback diagram in Set.} \\ f_!(A) \xrightarrow{\quad \text{id} \quad } f_!A \end{array}$$

We see that  $\tilde{p}$  must be an isomorphism, so  $f_!(U_s) \simeq 1$ . Since A is the coproduct of the objects  $U_s$ , we see that A is a coproduct of connected objects, as desired.

**Exercise 4.** Part a): let  $\overline{M} \xrightarrow{\overline{m}} X$ ,  $\overline{N} \xrightarrow{\overline{n}} Y$  be the closures of m in Sub(X), n in Sub(Y) respectively. Then by stability of the closure operation we have a pullback diagram



and hence the diagram

$$M \longrightarrow \overline{M} \\ \downarrow \qquad \qquad \downarrow^h \\ N \longrightarrow \overline{N}$$

is also a pullback.

Moreover, h is an epimorphism. In any regular category, the pullback functor along an epimorphism is faithful, and hence reflects monos and epis. Therefore in a topos it reflects isomorphisms (since a topos is balanced). So we have equivalences:

$$M \text{ is closed } \Leftrightarrow M \to \overline{M} \text{ is an isomorphism } \Leftrightarrow N \to \overline{N} \text{ is an isomorphism } \Leftrightarrow N \text{ is closed }$$

Part b): we have a pullback diagram

$$\begin{array}{c} R \longrightarrow X \times X \\ \downarrow \\ M \longrightarrow M \times M \end{array}$$

We have: M is separated if and only if  $\delta_M$  is closed. Since the map  $X \times X \to M \times M$  is epi, by part a) this is equivalent to: R is closed as a subobject of  $X \times X$ , as required.

**Exercise 5.** Part a): suppose the natural map  $\langle L\pi_0, \varepsilon_A L\pi_1 \rangle : L(B \times FA) \rightarrow LB \times A$  is an isomorphism. Since F has a left adjoint, F preserves finite products. To see that F preserves exponentials, we have the following natural bijections for an arbitrary object X of  $\mathcal{D}$ :

$$\begin{array}{rcl} \mathcal{D}(X,F(B^A)) &\simeq & \mathcal{D}(LX,B^A) \\ &\simeq & \mathcal{D}(LX \times A,B) \\ &\simeq & \mathcal{D}(L(X \times FA),B) \\ &\simeq & \mathcal{D}(X \times FA,FB) \\ &\simeq & \mathcal{D}(X,FB^{FA}) \end{array}$$

(where the third bijection is by application of the assumption), so that  $F(B^A)$  is naturally isomorphic to  $FB^{FA}$  by the Yoneda Lemma.

Conversely: if F is cartesian closed, we calculate for an arbitrary object X of  $\mathcal{C} :$ 

$$\begin{array}{rcl} \mathcal{C}(L(B \times FA), X) &\simeq & \mathcal{D}(B \times FA, FX) \\ &\simeq & \mathcal{D}(B, FX^{FA}) \\ &\simeq & \mathcal{D}(B, F(X^A)) \\ &\simeq & \mathcal{C}(LB, X^A) \\ &\simeq & \mathcal{C}(LB \times A, X) \end{array}$$

so we have an isomorphism  $L(B \times FA) \simeq LB \times A$ , again by the Yoneda Lemma (here the third bijection is by cartesian closedness of F). That the *given* morphism is an isomorphism is explicitly shown (by exhibiting an inverse) in the **Elephant**, Lemma A1.5.8.

Part b): Assume F is cartesian closed and L preserves 1. We calculate:

$$\begin{array}{rcl} \mathcal{C}(A,B) &\simeq & \mathcal{C}(1,B^A) \\ &\simeq & \mathcal{C}(L1,B^A) \\ &\simeq & \mathcal{D}(1,F(B^A)) \\ &\simeq & \mathcal{D}(1,FB^{FA}) \\ &\simeq & \mathcal{D}(FA,FB) \end{array}$$

so F is full and faithful.

Part c): Assume F is full and faithful and L preserves binary products.

First, we show that for objects A and B of C,  $B^{LFA}$  is isomorphic to  $B^A$ : for U arbitrary, we calculate

$$\begin{array}{rcl} \mathcal{C}(U,B^{LFA}) &\simeq & \mathcal{C}(LFA,B^U) \\ &\simeq & \mathcal{D}(FA,F(B^U)) \\ &\simeq & \mathcal{C}(A,B^U) \\ &\simeq & \mathcal{C}(U,B^A) \end{array}$$

Next, we see that we have natural bijective correspondences

$$\begin{array}{lcl} \mathcal{D}(X,F(B^A)) &\simeq & \mathcal{C}(LX,B^A) &\simeq & \mathcal{C}(LX,B^{LFA}) \\ &\simeq & \mathcal{C}(LX \times LFA,B) &\simeq & \mathcal{C}(L(X \times FA),B) \\ &\simeq & \mathcal{D}(X \times FA,FB) &\simeq & \mathcal{D}(X,FB^{FA}) \end{array}$$

so F is cartesian closed.

Part d): If f is an inclusion then  $f_*$  is full and faithful. Since  $f^*$  preserves finite limits, we can apply part c) and conclude that  $f_*$  is cartesian closed. Conversely, if  $f_*$  is cartesian closed then since  $f^*$  preserves 1 always, by part b) we see that  $f_*$  is full and faithful, so f is an inclusion.

**Exercise 6.** Part a): we must show that for an arbitrary cocomplete topos  $\mathcal{E}$ , we have a natural bijection between geometric morphisms from  $\mathcal{E}$  to  $\operatorname{Set}^{\mathcal{C}^{\operatorname{op}}}$  and pairs of subobjects of 1 in  $\mathcal{E}$ . Now we know that geometric morphisms  $\mathcal{E} \to \operatorname{Set}^{\mathcal{C}^{\operatorname{op}}}$  correspond to flat functors  $\mathcal{C} \to \mathcal{E}$ . Since  $\mathcal{C}$  is finitely complete, flat functors coincide with finite-limit preserving functors  $\mathcal{C} \to \mathcal{E}$ . In  $\mathcal{C}$  we have the following finite limit structure: 1 is the terminal object,  $0 = a \wedge b$ , and all arrows are monic. Hence a flat functor  $\mathcal{C} \to \mathcal{E}$  sends a and b to objects A and B for which the unique morphism to 1 is monic, and is completely determined by this.

Part b): since C is a poset, we may identify a sieve on some object X of C with a downwards closed subset of  $\{Y \in C \mid Y \leq X\}$ . Consider the following Grothendieck topology on C: for a sieve R on 1,  $R \in J(1)$  if and only if  $\{a, b\} \subset R$ ; for a sieve R on  $a, R \in J(a)$  if and only if  $a \in R$  and for a sieve R on  $b, R \in J(b)$  if and only if  $b \in R$ ; finally, every sieve on 0 (including the empty sieve) is in J(0).

Now we know that a geometric morphism  $\mathcal{E} \to \operatorname{Sh}(\mathcal{C}, J)$  correspond with flat (i.e., finite-limit preserving as we saw in part a)) and continuous functors  $\mathcal{C} \to \mathcal{E}$ . The continuity now means (for such a functor F) that  $F(1) = F(a) \cup F(b)$ and that F(0) = 0. So we get that F(a) and F(b) are subobjects of 1, that  $F(a) \cap F(b) = 0$  and  $F(a) \cup F(b) = 1$ . This means that F is (up to isomorphism) completely determined by F(a), which is a complemented subobject of 1.