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1 Exercises

Exercise 1 (Deadline: March 3) Let E be a topos, X an object of E and

A
m→ X a subobject of X such that the classifying map χA : X → Ω is monic.

a) (3 pts) Show that the unique map ! : A→ 1 is monic.

b) (3 pts) Suppose for a pair of maps f, g : Y → X there is a subobject
B → Y such that both squares

B

��

// A

m

��

Y
f
// X

and

B

��

// A

m

��

Y
g
// X

are pullbacks. Show that f = g.

c) (2+2 pts) We call a category well-powered if for every object, its collection
of subobjects is a set. As you know, a category is locally small if for every
pair Y,X of objects, the collection of arrows Y → X is a set.

Prove that a topos is well-powered if and only if it is locally small.

[Hint: use Exercise 1 of the lecture notes]

Exercise 2 (Deadline: March 17) Let E be a category with finite limits.
For X ∈ E and a subobject U of X, we define a map from U to Y (where

Y ∈ E) to be an equivalence class of diagrams X Z
moo

f
// Y where m is

a representative of U ; two such diagrams (m, f) and (m′, f ′) sre equivalent if
there is an isomorphism σ : Z → Z ′ satisfying m′σ = m and f ′σ = f .

Now, we define a partial map f : X ⇀ Y as a map from U to Y where U is
a subobject of X.

a) (3 pts) Show that there is a category Ep with the same objects as E , but
with partial maps as arrows.
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b) (3 pts) Show that there is a functor I : E → Ep which is the identity on
objects.

c) (4 pts) Show that in E , partial maps are representable if and only if the
functor I of part b) has a right adjoint.

Exercise 3 (Deadline: April 4) Call an object A of a locally small category
C connected if the representable functor C(A,−) : C → Set preserves finite
coproducts. From now on, we work in a topos E and we assume a geometric
morphism f = (f∗ a f∗) : E → Set.

a) (3 pts) An object A is connected if and only if A is non-initial and A is
not a coproduct of two non-initial subobjects.

b) (2 pts) Suppose the inverse image functor f∗ : Set→ E has a left adjoint
f!. Prove that an object A of E is connected precisely if f!(A) ' 1.

c) (2 pts) Let

X

n

��

g
// f∗(A)

f∗(m)

��

Y
h
// f∗(B)

be a pullback diagram in E . Prove that

the transposed diagram:

f!(X)

f!(n)

��

g̃
// A

m

��

f!(Y )
h̃

// B

is a pullback diagram in Set. [Hint: in Set, every object is a coproduct of
copies of 1]

d) (3 pts) We still assume the existence of the left adjoint f!. Prove that in
E , every object is a coproduct of connected objects. [Hint: for an object A
of E and element s ∈ f!(A), regarded as arrow 1→ f!(A) in Set, consider
the pullback diagram

Us

q

��

p
// f∗(1)

f∗(s)

��

A
ηA
// f∗f!(A)

where η is the unit of the adjunction f! a f∗]

Exercise 4 (Deadline: April 18) We are working in a topos E with a Lawvere-
Tierney topology (and associated universal closure operation).
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a) Suppose

M

��

m // X

g

��

N
n
// Y

is a pullback square with m,n mono and g epi. Show: M is closed in X
if and only if N is closed in Y .

b) Suppose that R is an equivalence relation on X and R //
// X // M

is a coequalizer diagram. Show that M is separated if and only if the
mono R→ X ×X is closed.

Exercise 5 (Deadline: May 19) a) (3 pts) Let F : C → D be a functor
between cartesian closed categories; suppose F has a left adjoint L. Show
that F is a cartesian closed functor (i.e., preserves finite products and
exponentials) if and only if the natural morphism

〈Lπ0, εALπ1〉 : L(B × FA)→ LB ×A

is an isomorphism for all A ∈ C, B ∈ D (here, ε is the counit of L a F ,
and π0, π1 are projections).

b) (2 pts) Let F and L be as in a). Show that if F is cartesian closed and L
preserves 1, then F is full and faithful.

c) (3 pts) Let again F and L be as in a). Show: if F is full and faithful and
L preserves binary products, then F is cartesian closed.

d) (2 pts) Let f : F → E be a geometric morphism between toposes. Show
that f is an inclusion if and only if f∗ is cartesian closed.

Exercise 6 (Deadline: June 2) Let C be the following preorder:

1

a

@@��������
b

^^========

0

^^>>>>>>>>

@@�������

a) (5 pts) Show that the presheaf category SetC
op

is a classifying topos for
“pairs of subobjects of 1”.

b) (5 pts) Give a Grothendieck topology J on C such that Sh(C, J) is a clas-
sifying topos for “complemented subobjects of 1” (recall that a subobject
A of an object X is complemented if there is a subobject B of X such
that A ∪B = X and A ∩B = 0).
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2 Solutions

Exercise 1. Part a): since χA is monic, the composition χA◦m = t◦! is monic;
so ! is monic.
Part b): the subobject B → Y is classified by both χA◦f and χA◦g; by unique-
ness of classifying maps, χA◦f = χA◦g; since χA is monic, f = g.
Part c): by Exercise 1 of the lecture notes, the map E(X,Y ) → Sub(Y × X)
which sends an arrow f : X → Y in E to the graph of f as subobject of Y ×X,
is injective. So if E is well-powered, then Sub(Y ×X) is a set, so E(X,Y ) is a
set; so E is locally small.

For the converse, if E is locally small then Sub(X), which is in bijective
correspondence with E(X,Ω), must be a set; so E is well-powered.

Exercise 2. Part a): we have to show that there are identities and a well-defined
notion of composition on partial maps, which make Ep a category.

Given representatives ( X Z
moo

f
// Y ) and ( Y W

noo
g
// Z ) of

partial maps f : X ⇀ Y , g : Y ⇀ Z respectively, let

V

φ

��

v // Z

f

��

W
n
// Y

be a pullback. Let the composition gf : X ⇀ Z be represented by ( X V
mvoo

gφ
// Z ).

It is easy to see that this is well-defined: if ( X Z ′
m′oo

f ′
// Y ) and ( Y W ′

n′oo
g′
// Z )

are other representatives of the same partial maps, then there are appropriate
isomorphisms σ : Z → Z ′ and τ : W → W ′ which ensure that the pullback
diagrams defining the composition will be isomorphic.

For the identity id : X ⇀ X we take the diagram ( X X
idoo id // X ). If

( X W
voo

g
// Z ) represents a partial map g : X ⇀ Z then by the above

definition, g◦id is represented by ( X V
voo

gφ
// Z ) where

V

φ

��

v // X

id
��

W
n
// X

is a pullback. We see that φ is an isomorphism and that modulo this isomor-
phism, n = v; so g◦id = g as partial maps X ⇀ Z. The other identity law is, of
course, similar.

It remains to prove that composition is associative; I do this sketchily. We
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have a diagram

Z

f

��

m // X

W
n //

g

��

Y

K

h
��

o // Z

L

and clearly, in order to define the compositions f(gh) and (fg)h, one needs to
“fill out” the upper left hand part of this by taking appropriate pullbacks:

��

//

��

// Z

f

��

W
n
//

g

��

Y

K
o
// Z

or
��

// Z

f

��
//

��

W

g

��

n
// Y

K
o
// Z

Clearly, for both pullbacks there is an isomorphism between the vertices which
commutes with the vertical and horizontal “legs” of the diagram.

Part b): define I(X) = X; for f : X → Y in E let I(f) : X ⇀ Y be represented

by the diagram ( X X
idoo

f
// Y ). Now obviously, I preserves identities;

that I preserves composition is left to you.

Part c): if X̃ represents partial maps into X (for X ∈ E) then there is a natural
1-1 correspondence between partial maps Y ⇀ X and morphisms Y → X̃; that
is, between Ep(I(Y ), X) and E(Y, X̃). So the adjunction is clear once we see

that (̃·) is a functor.

Given an arrow X ⇀ Y in Ep, represented by ( X Z
moo

f
// Y ), let f̃

be the morphism X̃ → Ỹ which represents the partial map

Z

ηXm

��

f
// Y

Here, ηX : X → X̃ is the universal arrow which belongs to the partial map
classifier structure.

Exercise 3. Part a): If A is connected then E(A, 0) must be initial in Set (since
E(A,−) preserves the empty coproduct), so A is non-initial in E . If A = B tC
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with B and C non-initial then E(A,A) ' E(A,B) t E(A,C), so the identity on
A factors through a proper subobject of A, which is impossible.

Conversely, suppose A is non-initial and not a coproduct of two non-initial
subobjects. Since 0 is strict in any topos, E(A, 0) = ∅. Consider a map f :
A → B t C. If f does not factor through either B or C then f−1B and f−1C
are non-initial and A = f−1B t f−1C; contradicting the assumption on A. We
conclude that E(A,−) preserves finite coproducts.

Part b): first, let us remark that E(A, 0) ' E(A, f∗(∅) ' Set(f!A, ∅), so A is
non-initial precisely when f!A is nonempty.

Suppose f!A = 1. Then A is non-initial by the remark; moreover, if A =
B tC with B and C non-initial, then 1 ' f!B t f!C so 1 is a coproduct of two
nonempty sets; this contradiction shows that A is connected.

Conversely, suppose A is connected. Then f!A is nonempty by the remark.
Moreover, we have a chain of equalities (using, in turn, the adjunction f! a f∗,
the fact that f∗ preserves 1 and coproducts, and the assumption that A is
connected):

2|f!A| = |Set(f!A, 1 + 1)| = |E(A, f∗(1 + 1))| =
|E(A, 1 + 1)| = |E(A, 1)|+ |E(A, 1) = 2

so |f!A| = 1 and hence f!A ' 1.

Part c): consider the commutative diagram

(∗)

X

n

��

g
// f∗A

f∗m

��

Y
h
// f∗B

for a map of sets m : A→ B

By the hint, B is a coproduct
⊔
b∈B 1 so f∗B =

⊔
b∈B 1. Similarly, f∗A =⊔

a∈A 1 and f∗m sends the a-th summand of f∗A into the f(a)-th summand of
f∗B.

Since coproducts are preserved by pullback functors, we have that Y is iso-
morphic to a coproduct

⊔
b∈B Yb and likewise, X is a coproduct

⊔
b∈B Xb. For

each b ∈ B we have a pullback square

Xb

��

// X

n

��

Yb // Y

Now the diagram (∗) is a pullback precisely when for each b ∈ B, the object
Xb is a coproduct of |n−1(b)| many isomorphic copies of Yb. But if this is the
case, then this is preserved by the functor f!. Hence the transposed diagram is
a pullback in Set.
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Part d): we follow the hint. Let A ∈ E , s ∈ f!A, and

Us

q

��

p
// f∗(1)

f∗(s)

��

A
ηA
// f∗f!(A)

be a pullback in E

By part c), the transposed diagram

f!(Us)

f!(q)

��

p̃
// 1

s

��

f!(A)
id
// f!A

is a pullback diagram in Set.

We see that p̃ must be an isomorphism, so f!(Us) ' 1. Since A is the coproduct
of the objects Us, we see that A is a coproduct of connected objects, as desired.

Exercise 4. Part a): let M
m̄→ X, N

n̄→ Y be the closures of m in Sub(X),
n in Sub(Y ) respectively. Then by stability of the closure operation we have a
pullback diagram

M

h
��

// X

g

��

N // Y

and hence the diagram

M

��

// M

h
��

N // N

is also a pullback.
Moreover, h is an epimorphism. In any regular category, the pullback functor

along an epimorphism is faithful, and hence reflects monos and epis. Therefore
in a topos it reflects isomorphisms (since a topos is balanced). So we have
equivalences:

M is closed ⇔
M →M is an isomorphism ⇔
N → N is an isomorphism ⇔

N is closed

Part b): we have a pullback diagram

R

��

// X ×X

��

M
δM

// M ×M
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We have: M is separated if and only if δM is closed. Since the map X ×X →
M ×M is epi, by part a) this is equivalent to: R is closed as a subobject of
X ×X, as required.

Exercise 5. Part a): suppose the natural map 〈Lπ0, εALπ1〉 : L(B × FA) →
LB×A is an isomorphism. Since F has a left adjoint, F preserves finite products.
To see that F preserves exponentials, we have the following natural bijections
for an arbitrary object X of D:

D(X,F (BA)) ' D(LX,BA)
' D(LX ×A,B)
' D(L(X × FA), B)
' D(X × FA,FB)
' D(X,FBFA)

(where the third bijection is by application of the assumption), so that F (BA)
is naturally isomorphic to FBFA by the Yoneda Lemma.

Conversely: if F is cartesian closed, we calculate for an arbitrary object X
of C:

C(L(B × FA), X) ' D(B × FA,FX)
' D(B,FXFA)
' D(B,F (XA))
' C(LB,XA)
' C(LB ×A,X)

so we have an isomorphism L(B×FA) ' LB×A, again by the Yoneda Lemma
(here the third bijection is by cartesian closedness of F ). That the given mor-
phism is an isomorphism is explicitly shown (by exhibiting an inverse) in the
Elephant, Lemma A1.5.8.

Part b): Assume F is cartesian closed and L preserves 1. We calculate:

C(A,B) ' C(1, BA)
' C(L1, BA)
' D(1, F (BA))
' D(1, FBFA)
' D(FA,FB)

so F is full and faithful.

Part c): Assume F is full and faithful and L preserves binary products.
First, we show that for objects A and B of C, BLFA is isomorphic to BA:

for U arbitrary, we calculate

C(U,BLFA) ' C(LFA,BU )
' D(FA,F (BU ))
' C(A,BU )
' C(U,BA)
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Next, we see that we have natural bijective correspondences

D(X,F (BA)) ' C(LX,BA) ' C(LX,BLFA)
' C(LX × LFA,B) ' C(L(X × FA), B)
' D(X × FA,FB) ' D(X,FBFA)

so F is cartesian closed.

Part d): If f is an inclusion then f∗ is full and faithful. Since f∗ preserves finite
limits, we can apply part c) and conclude that f∗ is cartesian closed. Conversely,
if f∗ is cartesian closed then since f∗ preserves 1 always, by part b) we see that
f∗ is full and faithful, so f is an inclusion.

Exercise 6. Part a): we must show that for an arbitrary cocomplete topos

E , we have a natural bijection between geometric morphisms from E to SetC
op

and pairs of subobjects of 1 in E . Now we know that geometric morphisms
E → SetC

op

correspond to flat functors C → E . Since C is finitely complete,
flat functors coincide with finite-limit preserving functors C → E . In C we have
the following finite limit structure: 1 is the terminal object, 0 = a ∧ b, and all
arrows are monic. Hence a flat functor C → E sends a and b to objects A and
B for which the unique morphism to 1 is monic, and is completely determined
by this.

Part b): since C is a poset, we may identify a sieve on some object X of C
with a downwards closed subset of {Y ∈ C |Y ≤ X}. Consider the following
Grothendieck topology on C: for a sieve R on 1, R ∈ J(1) if and only if {a, b} ⊂
R; for a sieve R on a, R ∈ J(a) if and only if a ∈ R and for a sieve R on b,
R ∈ J(b) if and only if b ∈ R; finally, every sieve on 0 (including the empty
sieve) is in J(0).

Now we know that a geometric morphism E → Sh(C, J) correspond with flat
(i.e., finite-limit preserving as we saw in part a)) and continuous functors C → E .
The continuity now means (for such a functor F ) that F (1) = F (a) ∪ F (b)
and that F (0) = 0. So we get that F (a) and F (b) are subobjects of 1, that
F (a)∩F (b) = 0 and F (a)∪F (b) = 1. This means that F is (up to isomorphism)
completely determined by F (a), which is a complemented subobject of 1.
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