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Art and Science have the same basic subject matter: Observations.
Art (visual art): portrays visual perception experiences (perhaps
from dreams, fleeting visions, views from afar). The human mind is
all too willing to accept the artistic rendering as part of everyday
reality.



Figure: Kazimir Malevich – Eight Red Rectangles (1915)



Science needs to develop a consistent picture of the world (often, a
mathematical picture) which, as far as possible, agrees with the
observations.
In both domains: we form a mental picture of the world, become
emotionally attached to it, and call it reality.
“Realist art”, “realistic arithmetic education”. . .



In mathematics, we also make observations (we see patterns, guess
some generality), but our conjectures need proofs.
And: we form ourselves a picture of the mathematical universe. So
we have:

Observations Proofs
Interpretation Foundational Theory

Proofs and picture of the mathematical universe: the subject
matter of Logic



One of the most basic notions of mathematics: infinity. Ancient
Greeks: for every number there is a greater prime number; the
process of approximating

√
2 by fractions never ends.

The mathematician who pioneered the study of infinity: Georg
Cantor (1845–1918).
As soon as there is an infinite set, there is an infinity of infinities:
the set of real numbers is “more infinite” than the set of rational
numbers; there are more subsets of the real line than there are real
numbers, etcetera.



Figure: Georg Cantor



Cantor developed the notion of sets, ordinal and cardinal numbers,
transfinite induction,. . .
He formulated the Continuum Problem: Is there a set of real
numbers which is infinite, yet not in bijective correspondence with
either the natural numbers or the real numbers?



Cantor’s world of sets is seen by many as a good picture of the
mathematical universe.
What about proofs? The mathematician who urged most strongly
for a formal theory of proofs, was David Hilbert (1862–1943).



Figure: David Hilbert



Hilbert 1900:

1 Settle the Continuum Problem.

2 Prove that the axioms for the arithmetic of real numbers are
free of contradiction.

10 Find an algorithm to decide whether a polynomial equation
with integer coefficients has a solution in the integers.



Mathematics had become, during the 1800s, more and more an
axiomatic science. Hilbert:

When we are engaged in investigating the foundations of
a science, we must set up a system of axioms which
contains an exact and complete description of the
relations subsisting between the elementary ideas of that
science.

But then, we need to assure ourselves that our axiom systems are
“free of contradiction”. . . What does that actually mean?



Hilbert 1926 (On the Infinite): There are two mathematical worlds:

I an actual world, directly accessible to inspection by the mind:
the world of the integers and their elementary properties, and
the geometry of euclidean space;

I and an ideal world, where lots of things live which have nicer
properties than the actual things, and whose description is
often more elegant.

Often, we arrive at knowledge about the actual world via a detour
through the ideal world.



Examples of things from the ideal world:

I Imaginary numbers. Philosophers may doubt their existence
but we enjoy the fact that every polynomial has a complete
factorization, and the beauty of complex integration by which
we also establish facts about the actual world (such as∑∞

n=1
1
n2

= π2

6 ).

I Infinitesimals. Weierstraß’s theory of limits and convergence
shows how these can be reduced to finite numbers.

I Fractional ideals of number rings. Many rings, like Z[
√
−5],

lack the desirable property of unique prime factorization; but
this is restored if one turns to factorization of fractional ideals;
this was shown by Kummer.

I The world of infinite sets.



Hilbert was a great admirer of Cantor’s work: he calls Cantor’s
theory of sets

the most admirable flower of the mathematical mind, and
one of the highest achievements of purely intellectual
human activity whatsoever.

and:

from the paradise Cantor has created for us, no one shall
expel us.



Infinite sets are hard to study, but proofs about infinite sets are
finite things. What should a “theory of proofs” (Beweistheorie)
achieve?
Hilbert formulated two versions of what later was termed
“Hilbert’s Programme”:

I Hilbert’s Programme, weak form: proof theory should
establish that a detour through the ideal world can never lead
to an absurd result.

I Hilbert’s Programme, strong form: proof theory should
establish that every detour through the ideal world can be
eliminated, resulting in a (probably much longer and less
elegant) proof which just mentions concrete things.

Example: Wiles’ proof of Fermat’s Last Theorem.



Example of a formal proof:
†(¬ϕ) †(¬ψ)

†(¬(¬ϕ ∨ ¬ψ)) ¬ϕ ∨ ¬ψ †(¬(¬ϕ ∨ ¬ψ)) ¬ϕ ∨ ¬ψ
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¬ϕ ∨ ¬ψ

¬(ϕ ∧ ψ)→ (¬ϕ ∨ ¬ψ)



Algorithmic Computation

Another basic activity of mathematicians is: calculate according to
an algorithm (long division, determining the gcd of two numbers,
construct a perpendicular with ruler and compass,. . . ).
Logic has provided a formal theory of algorithmic computability.
The best articulated form was the theory in Alan Turing’s paper
On Computable Numbers, with an Application to the
Entscheidungsproblem, 1936.



Figure: Alan Turing



Turing:

Computing is normally done by writing certain symbols
on paper. We may suppose this paper is divided into
squares like a child’s arithmetic book.[. . . ]
I shall also assume that the number of symbols which
may be printed is finite.[. . . ]
The behaviour of the computer at any moment is
determined by the symbols which he is observing, and his
“state of mind” at that moment.[. . . ]
We will also suppose that the number of states of mind
which need to be taken into account is finite.[. . . ]



Turing’s analysis of a human being who sets about doing a
computation according to an algorithm, led to the definition of a
“Turing machine”, which consists of:

I a finite set SM of “states of mind”;

I a finite set Sy of “symbols”;

I a finite set A of “actions”;

I a function SM × Sy → A, defining which action to take when
reading a symbol in a particular state of mind.

Among the “states of mind” there is one special state, called the
“halting state”, after which no action is taken. When the machine
reaches the halting state, then what is written on the tape is the
“output” of the computation.



Turing’s thesis: whatever can be calculated according to some
algorithm whatsoever, can be calculated by a Turing machine.
This thesis has stood the test of time.



A set A of (n-tuples of) natural numbers is recursive if its
characteristic function is Turing machine computable.
A set R of (n-tuples of) natural numbers is semi-recursive if there
is a recursive set A such that

R = {~x | for some n, (~x , n) ∈ A}

Every recursive set is semi-recursive, but not conversely. A
counterexample: Turing’s Halting Set, the set of tuples (~x , n) such
that the n-th Turing machine, acting on inputs ~x , reaches the
halting state.



A famous application of the formal theory of
computation: Matiyasevich’s Theorem

In 1970, the Russian Yuri Matiyasevich (he was 23 years old!)
proved the following theorem:

Theorem Let R be a semi-recursive set of n-tuples of natural
numbers. There is a polynomial P in n + k variables
X1, . . . ,Xn,Y1, . . . ,Yk such that for every n-tuple ~x of natural
numbers the following statements are equivalent:

I ~x ∈ R

I the polynomial in k variables P(~x ,Y1, . . . ,Yk) has a solution
in the integers.



Recall Hilbert’s 10th Problem from 1900:

10 Find an algorithm to decide whether a polynomial equation
with integer coefficients has a solution in the integers.

Matiyasevich’s theorem shows that such an algorithm cannot exist.
One can ask: what if the ring of integers is replaced by other
number rings? This is an area of continuing research.



Formal Proofs and Computations: working together

The most famous example of a “proof by computer” is the proof of
the Four Colour Theorem: for any planar graph one can assign to
each vertex one of four “colours” such that no two vertices which
are linked (have an edge between them) get the same colour.
This was proved by Appel and Haken in 1976 with the help of
enormous computer calculations; however, there were some errors.
Several mathematicians were not convinced.
What is the risk? Just as there is no test whether a Turing
machine with given input will ever reach the halting state, there is
no test whether a computer program, even if it appears to work,
performs the function it was designed for.
But then, also extremely long “human” proofs arouse suspicion.
Chess players say: “long analysis, wrong analysis”.
A typical mathematical paper is already a worthy assignment for a
bachelor thesis.



Other examples of very long proofs:
Feit and Thompson (1963): every finite group of odd order is
solvable.
Hales: proof of the Kepler Conjecture (no packing of congruent
balls in 3-dimensional Euclidean space can have density greater
than the so-called “cannonball arrangement”.



Solution: Formal Proof Verification
Write out a complete formal proof of the theorem. This can now
be done with the help of “proof assistants” (e.g., Coq). The
computer can check the correctness of a formal proof.
Why is this any more trustworthy?
A proof system is usually small: fits on two A4 sheets. A program
which checks that all proof rules have been applied correctly, can
be so short that it is humanly verifiable.



Hales: It has been necessary to [. . . ] retool the foundations of
mathematics for practical efficiency, while preserving its reliability
and austere beauty.



Other Foundations?
Is “Cantor’s Paradise” the only possible view on the mathematical
universe?
A recent proposal (Voevodsky et al): Homotopy Type Theory.
Homotopy Type Theory forces us to think about “equality”.



Professor Whitehead writes in his last book that if we begin to ask
ourselves the meaning of the simple word “equal” we find ourselves
plunged into abstruse modern speculations concerning the
character of the universe.
(E. Cunningham)



Homotopy Type theory sees the world organized in “path spaces”:
the “equality” of two elements is testified by the existence of a
path between them.



Appendix: Truth?
Reverting to the Cantor’s Continuum Problem: is there a set of
reals A which is infinite, yet not in bijection with either N or R?
Cantor’s speculation: no. This is the Continuum Hypothesis.
Gödel proved in 1938: the Continuum Hypothesis cannot be
refuted.
Cohen proved in 1963: the Continuum Hypothesis cannot be
proved.
Gödel asked: but is it true?


