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If £ is a topos and C is a full subcategory of £ with the properties:
C is closed under finite limits in £
the embedding C — & has a left adjoint which preserves finite
limits

then C is also a topos, and called a subtopos of £.

Subtoposes of £ correspond to local operators on £.



Why study local operators in the effective topos?

> “Because it's there” (Mallory); subtoposes form an intrinsic
piece of structure of the topos

» local operators form a Heyting algebra into which the
semilattice of Turing degrees embeds; hence a playground for
doing recursion theory

» local operators define new notions of realizability (also for
classical theories)



In a topos with a subobject classifier 1 L (Q is to be thought of
as the ‘set of subsets of a one-element set’, and T names the
maximal such subset), a local operator is a map j : Q — Q which
satisfies:

i) Vpq.(p— q) — (jp — jq) (j is monotone)

i) jT =T (j preserves T)

i) Vp.jp — jp (j is idempotent)
These properties imply: Vpq.j(p A q) < jp A jq
A local operator can be regarded as a modal operator on the type
theory of the topos.



The effective topos Eff (Hyland 1980) is based on indices of partial
recursive functions. For e, x € N we write ex for p(x), the result
of applying the e-th partial recursive function to x. We also write
ex| for: ex is defined, i.e. 3yT (e, x,y). We employ a primitive
recursive coding of pairs (a, b) and sequences (ap, ..., an—1).

Let A, B C N. We write:

ANB = {(ab)lac Abec B}
A— B {e|for all a € A,eal and ea € B}

This is the logic of realizability



The effective topos (continued)
Objects of &ff: pairs (X, [- = -]) where X is a set and for
x,y € X, [x =y] is a subset of N such that the sets

ﬂx,yEXIIX :y]] - |[y :X]]
Neyzex(Ix=yInly =2]) = [x = 2]
are nonempty.

An arrow (X,[-=-]) — (Y,[- =]) is represented by a function
F : X x Y — P(N) which satisfies conditions. . .



In &ff, the subobject classifier is 1 L Q where:
1=({*}[-=-]) with[*=%]=N
Q=(P(N),[-=-]) with [A=B]=(A— B)A(B — A)
A monotone map: Q — Q is given by a function f : P(N) — P(N)
for which
En(f) = () (p—q) — (fo— fq)
p,qCN

is a nonempty set.

Define also:
Ev(f) = f(N)

Ea(f) = Npen(ffe — fp)



A local operator Q — Q is given by a function f : P(N) — P(N)
for which E,(f), E7(f) and Eq(f) are nonempty. Let

Eioe(f) = Em(f) A ET(f) A Ea(f)
For monotone maps f, g : P(N) — P(N) we write

[f<egl=()fo—er
pCEN



There is a function L, acting on monotone maps f, such that L(f)
is a monotone map, and there are indices e; and e such that

e € ﬂf Em(f) - (Eloc(L(f)) A |[f < L(f)]])
& € Nrg(Em(f) N Eoc(g) N <g]) = [L(f) < &]

L(f) is the local operator generated by f.
Theorem (Pitts) The map L can be defined by

L(f)(p) = (Vg SN[({0} Ap) C gand ({1} Afq) C q}



Suppose {f, | n € A} is an internal (recursive) family of monotone
maps indexed by a nonempty set A C N. That means: for some
e € N we have

Vne A(en € En(fn))

Then the join \/, .4 fa is given by
(\V =)(p) = {(n.x)|x € fu(p)}
neA

We have for arbitrary monotone g: (),ca({n} — [fn < g]) is
nonempty if and only if [\/,cafa < g] is nonempty.



Let A be a nonempty subset of P(N) (we write A € P*P(N) ).
Define:

Galp) = (J(A—p)

AcA

Then G4 is monotone. G4 is the least f such that (), 4 f(A) #0
Every nontrivial monotone map f is a recursive join of such G4:
let A={J,cnf(p)and forne Alet fy = Gocn|nefq}-
Then f ~\/ cafn



Every local operator j : 2 — € satisfies
ido <j<Ap.T

We call Ap. T the trivial local operator (it corresponds to the
degenerate topos).

Known results about local operators in Eff:

1. There is the ‘double negation’ local operator ——:

p = {N ifp#£0

() otherwise

2. For a monotone map f we have:

a. L(f) is trivial if and only if £(0) # 0

b. L(f) is isomorphic to —— if and only if () = () and
L(F)({0}) nL(F)({1}) # 0



More known results:

(Pitts) Let A = {{m|m > n}|n € N} Thenid < L(G4) < ==
For an arbitrary function @ : N — N let p(n) = {{a(n)}}

Then for j = L(\/ ,cn Gp(n)) we have that

(M {n} = j({a(n)}) #0

neN

(this means that the function « determines a total map from N to
N in the topos corresponding to j), and j is the least local
operator with this property. Let us denote j by j,.

Theorem (Hyland) For o, 3 : N — N we have: j, < j3 if and only
if a <7 3 (« is Turing reducible to 3)



Back to monotone maps. Such f can be written as
f =V e Gon) for 0 : B — P*P(N)
We wish to study the map L(f):

L(F)(p) = [{a S N[({0} Ap) € qand ({1} A fq) € q}
Equivalently, L(f)(p) = L'(f)(p)., where
L'(f)(p)o = {0} Ap
L(f)(Platr = L'(f)(p)a U ({1} AF(L(F)(P)a))

L'(f)(p)r Uﬁ<)\ L'(f)(p)s for A a limit



Definition A sight is, inductively,
either a thing called NIL

or a pair (A,o) with A C N and o a function on A such that
o(a) is a sight for each a € A.

To any sight S we associate a well-founded tree Tr(S) of coded
sequences of natural numbers, as well as a subset of its set of
leaves (which we call good leaves), by induction:

If S = NIL then Tr(S) = {()} and () is a good leaf;
if S =(0,0) then Tr(S) = {()} and () is not a good leaf;

if S=(A, o) then Tr(S) = {(a) xt|a € A, t € Tr(c(a))}, and
(a) x t is a good leaf of Tr(S) if and only if ¢ is a good leaf of

Tr(a(a))



Consider our typical monotone map f =\/ g Gy
For w € N, p C N and a sight S, we say that S is
(w, 0, p)-supporting if:

- whenever s is a good leaf of Tr(S), ws € {0} A p

- whenever s € Tr(S) is not a good leaf, ws = (1, n) with n € B
and Out(s) € 6(n) (where Out(s) = {a|s* (a) € Tr(S)} )
Theorem L(f) is isomorphic to the function

p — {w|there is a (w, 0, p)-supporting sight}



If f = G4 we can talk about a (w, A, p)-supporting sight S:
- whenever s is a good leaf of Tr(S), ws € {0} A p
- otherwise, ws = (1,0) and Out(s) € A

Again, L(f) is isomorphic to

p— {w]| thereis a (w, A, p)-supporting sight}

In this talk we concentrate on such f = G4. We are interested in
the preorder (P*P(N), <;) where A <; B if and only if
L(G4) < L(Gp)



The following are equivalent:
i) L(Ga) < L(Gg)
i) Ga<L(Gg)
i) Maca L(Gs)(A) # 0
iv) There is a number w such that for all A € A, there is a
(w, B, A)-supporting sight.



Example. Suppose A, B € P*P(N), B has the n-intersection
property (for every n-tuple By,...,B, € B, BiN---N B, # ) and
A has not. Then L(G4) £ L(GR).

Lemma 1 If B has the n-intersection property and Sy,...,5, are
sights on B (for every i, and every s € Tr(S;) which is not a good
leaf, Out(s) € B), then there is a d € (]_; Tr(S;) which is a good
leaf of at least one S;.

Lemma 2 If S and T are two sights on B3 and both are

(w, B, N)-supporting, then every good leaf of S is also a good leaf
of T.



Example (continued) Suppose B has n-intersection property and
A contains Ay,..., A, with AynN---NA, =0.

Suppose L(G4) < L(Gp). Then for some w there is, for each

A€ A, a(w,B,A)-supporting sight. In particular for each A; there
is a (w, B, A;)-supporting sight S;.

By Lemma 1, there is d € (/_; Tr(S;) which is a good leaf of
some S;. By Lemma 2, d is a good leaf of every S;.

It follows that for each i, wd € {0} A Aj; so wd = (0, x) with

x € (7.1 Aj; contradiction.



Finitary examples We look at finite collections A of finite subsets
of N such that (A = () (otherwise, L(G4) ~ id), yet for

AL A e A ATNA #* 0 (otherwise, L(GA) ~ —|—|).

We consider, for 0 < 2m < o < w, the collection

On =A{Bc{l,....a}||a— Bl =m}

the collection of ‘co-m-tons’ in «

Note: for such O, we have Of, £, F, where F is Pitts’ example
{{m|m > n}|n € w}. For, F has the k-intersection property for
every k.



A few sample results

In (P*P(N), <), OY ={p C N||N — p| =1} is an atom, and
{{0},{1}} is a co-atom.

T2 is the least number d such that Of, does not have the
d-intersection property. Hence, if rml—i-lj <=7, then

Om <t Op 41

Also, O%tm <, O%

We have an infinity of pairwise distinct finitary local operators.



Recall: for a function ¢ : N — N we say ‘j forces ¢ to be total’ if

({n} = i({e(n)})

is nonempty.

For D C N we say ‘j forces D to be decidable’ if j forces xp (the
characteristic function of D) to be total.

Theorem For 0 < 2m < a < w, L(Gpg) does not force any
non-recursive D to be decidable.



On the other hand, for Pitts' 7 = {{m|m > n}|n € N}, L(GF)
forces every arithmetical D to be decidable.

Idea: induction on arithmetical complexity. Given A C N such that
L(Gr) forces A to be decidable. We consider

JA = {x|3n{x,n) € A}

The assumption gives us Fa € (,({n} — L(Gr)({xa(n)}))
For given x, consider the sequence (Fa({(x,0)),..., Fa((x,n)))
We can construct a recursive function H such that for all x, n:

H(x)n € L(GF)({0}) if for some m < n, (x,m) € A
H(x)n € L(Gr({1}) otherwise

It follows that for each x, H(x)n € L(Gr)({x3a(x)}) for
sufficiently large n. That is,

H(x) € Gr(L(GF)({xaa(x)}))

Using Gr < L(Gr) and L(GFr)L(Gr) < L(GF) we get the result.



If j is a local operator in Eff we can look at the interpretation of
first-order arithmetic in the subtopos determined by j. This is
given by ‘j-realizability’. Define the notion ‘n j-realizes ¢’ by
induction on ¢ as follows:

n j-realizes an atomic ¢ iff ¢ is true;

n j-realizes ¢ A1) iff n = (a, b) such that a j-realizes ¢ and b

J-realizes

n j-realizes ¢ — 1 iff for all m such that m j-realizes ¢, nm]|

and

nm € j({k |k j-realizes ¢})
n j-realizes Ix¢(x) iff n = (a, b) such that b j-realizes ¢(a)
n j-realizes Vx¢(x) iff for all m, nm| and

nm € j({k| k j-realizes ¢(m)})



Using j-realizability we can prove:

Theorem If a local operator j forces every arithmetical subset of N
to be decidable, then the subtopos determined by j satisfies true
arithmetic.

We have identified a non-Boolean subtopos of £ff which
nevertheless has true arithmetic: the subtopos determined by
L(Gg). There are others: e.g. determined by j, where « is some
Al-complete function.

Using the language of sights we can express j-realizability more
concretely in the case j = L(Gy) for 6 : B — P*P(N) as before.
For example, the implication clause:

n j-realizes ¢ — 1 iff for every m such that m j-realizes ¢,
nm| and there is an (nm, 6, A)-supporting sight S; where
A = {k|k j-realizes ¢}



A variation and application to classical realizability (based on ideas
of Wouter Stekelenburg and Thomas Streicher)

In relative realizability we consider an inclusion Af C A of partial
combinatory algebras, such that:

i) the application on A* is the restriction of the application of A

ii) A" contains elements k and s satisfying the PCA axioms for
both A% and A

The relative realizability tripos has, in each fibre over a set X, the
set of all functions from X to P(A). The preorder is defined by:

¢ < 1 iff the set (), cx(¢(x) — 1b(x)) contains an element of Af.
Let U be a proper subset of A— A?. Then the map

((=) = U) — U:P(A) — P(A) defines a nontrivial local operator
on the relative realizability topos; the corresponding subtopos is
Boolean.



Given a relative realizability situation A* C A and U C (A — A*) we
make the following definitions: let A = A and 1 be the set of coded
sequences of elements of A. For s € A and m = (mg, ..., Th—1) We
write s o for (s, mo,...,mp—1). We write w>y for (m, ..., mp_1).
Elements of A x I are denoted s x m. We define a new (total)
application on A by: t e s = Ap.t(s o p). Define:

U = {t*m|tris defined and € U}
K = Ar.mo(m>2)

S = Ap.po(p2 0 p1(p>2))

kr = Ap.pom

@ = Ap.po(kps, © p>1)



We can prove:

(51) txsorell & tesxme 1l

(52) txmell & Kxtosome 1L
(S3) (teu)e(seu)sxmell < Sxtosouome 1l
(54) txkromrell & a@xtome 1l

(S5) txmell & kpxton € 1L

This means, that the tuple (A, e, 1L, @, k_y, K, S) is a strong
abstract Krivine structure in the sense of Streicher. We can let QP
(the set of quasi-proofs) be A,
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