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Partial Combinatory Algebras (PCAs)
A Partial Combinatory Algebra is a set A together with a partial
map A× A⇀ A (the application map). Also here we write, for
elements a, b ∈ A, ab ↓ to indicate that the pair (a, b) is in the
domain of the application map.
Moreover, a PCA A should have elements k and s satisfying:

kx ↓
(ka)b = a

(sa)b ↓

and: if (ac)(bc) ↓ then ((sa)b)c ↓ and

((sa)b)c = (ac)(bc)

.



PCAs are building blocks of toposes. For each PCA A we have a
category Asm(A) of assemblies on A:
An assembly over A is a pair (X ,E ) where X is a set and E (x) is a
nonempty subset of A, for each x ∈ X .
A morphism of assemblies (X ,E )→ (Y ,F ) is a function
f : X → Y of sets, for which there is an element a ∈ A such that
for all x ∈ X and all b ∈ E (x), ab ∈ F (f (x)). One says that a
tracks the function f .



The category Asm(A) is locally cartesian closed, regular, has a
weak subobject classifier (is a quasi-topos). Moreover, Asm(A)
comes with an adjunction

(Γ : Ass(A)→ Set) a (∇ : Set→ Ass(A))

Γ(X ,E ) = X ; ∇(X ) = (X , λx .A).
The category Asm(A) also has a natural numbers object.



Theorem (Pitts 1980; Carboni, Freyd, Scedrov 1988): the exact
completion of Asm(A), Asm(A)ex/reg, is a topos, the realizability
topos over A.



We now wish to understand: how functorial is the construction
A 7→ RT(A)?
It turns out that there is a very nice categorical structure on the
class of PCAs, which was first explored by John Longley in his
thesis (1995).
Let A,B be PCAs. An applicative morphism A→ B is a total
relation γ (we think of γ as a function from A to the set of
nonempty subsets of B, so (A, γ) is an assembly over B) for which
there is an element r ∈ B which satisfies:
For each pair a, a′ of elements of A and b ∈ γ(a), b′ ∈ γ(a′), if
aa′ ↓ in A then rbb′ ↓ in B, and rbb′ ∈ γ(aa′).
The element r realizes the morphism γ. Composition of morphisms
is composition of total relations.
We think of γ as a simulation in B of computations in A; the
element r is a machine that translates code for an A-program into
code for a B-program.



Theorem (Longley 1995): every applicative morphism A
γ→ B gives

rise to a regular functor Asm(γ) : Asm(A)→ Asm(B) which makes
the diagram

Asm(A)

Γ &&LL
LLL

LLL
LL

Asm(γ)// Asm(B)

Γ
��

Set

commute. Conversely, every regular functor making this diagram
commute, is of the form Ass(γ) for an essentially unique
applicative morphism γ : A→ B.
In fact the functor Asm : PCA→ REG/Set, which sends an
assembly A to the functor ΓA : Asm(A)→ Set, is locally an
equivalence.



I. Computationally dense morphisms
What do geometric morphisms between realizability toposes look
like?
Fundamental observation by Peter Johnstone (2013): Every
geometric morphism RT(A)→ RT(B) restricts to an adjunction
between the categories of assemblies.
The left adjoint of such a restriction is always a regular functor
commuting with the Γ’s, and therefore corresponds to an
applicative morphism B

γ→ A. The question then is:
For which applicative morphisms γ : B → A does the regular
functor Ass(γ) : Ass(B)→ Ass(A) have a right adjoint?



A generalization: ordered PCAs.
An ordered PCA (OPCA) is a poset (A,≤) with a partial
application function a, b 7→ ab for which the following hold:

I the domain of the application function is downwards closed
and application is order-preserving on its domain;

I there exist k and s in A such that kab ≤ a and sabc � ac(bc)
(i.e., if ac(bc)↓ then sabc↓ and s(abc) ≤ ac(bc).

Main example: given an ordinary PCA A, its powerset P(A)
becomes an OPCA if we put: αβ↓ iff for all a ∈ α, b ∈ β, ab↓, in
which case we let αβ be the subset {ab | a ∈ α, b ∈ β}.



An applicative morphism between OPCAs A and B is a function
f : A→ B for which there is some r ∈ B satisfying: whenever aa′↓
in A, then rf (a)f (a′)↓ in B, and rf (a)f (a′) ≤ f (aa′).
An assembly over an OPCA A is a pair (X ,E ) with X a set and
E (x) a nonempty downwards closed subset of A, for each x ∈ X .
Similarly to Longley’s treatment we have a local equivalence
Asm : OPCA→ REG/Set. Also, Pitts’ theorem generalizes:
Asm(A) is a regular category, and Asm(A)ex/reg is a realizability
topos RT(A).
We are interested in applicative morphisms f : B → A for which
Asm(f ) : Asm(B)→ Asm(A) has a right adjoint. Because then,
applying the exact completion we obtain a geometric morphism of
realizability toposes.



Call an applicative morphism f : B → A between OPCAs
computationally dense if for all a ∈ A there exists b ∈ B such that
whenever af (c)↓ for c ∈ B, we have bc↓ in B, and f (bc) ≤ af (c).
It says: every endomap on B which is realized (modulo f ) in A, is
already (up to order) realized in B.
Theorem (Hofstra 2003): Asm(f ) : Asm(B)→ Asm(A) has a
right adjoint if and only if f is computationally dense.



A further generalization: relative OPCAs.
If A is an OPCA, a filter on A is a subset F which:

I is upwards closed

I is closed under the application map

I contains elements k and s which satisfy the axioms for A
being an OPCA.

We call the pair (A,F ) a relative PCA.
For example: let B = NN, A = P(B). We could take F the set of
those elements of A which contain at least one computable
function (Kleene-Vesley 1965).
An assembly over a relative PCA (A,F ) is just an assembly over A,
but a morphism of such assemblies has to be tracked by an
element of F . Again, Asm(A,F )ex/reg is a topos, RT(A,F ).
It turns out that for important closure properties of realizability
toposes one has to move to these relative realizability toposes
(Zoethout 2022)



II. BCOs and triposes
In a very nice paper (Hofstra 2006), Pieter analyzed the notion of
a relative OPCA from a more primitive notion. The central
definition is that of a basic combinatorial object (BCO).
Definition: a BCO is a poset (Σ,≤) together with a set FΣ of
partial endofunctions on Σ, which satisfies the following axioms:

1. Every function in FΣ has downwards closed domain and is
order-preserving on its domain;

2. there is a total function i ∈ FΣ such that i(a) ≤ a for all
a ∈ Σ (i is a “weak identity”);

3. For each pair f , g ∈ FΣ there is h ∈ FΣ satisfying:
domain(gf ) ⊆ domain(h) and h(a) ≤ g(f (a)) for
a ∈ domain(gf ) (we have some sort of “weak composition”).



Note that every poset is a BCO, as is every monoid, every partial
combinatory algebra. More importantly, every relative OPCA is a
BCO in a natural way.
A morphism between BCOs (Σ,≤,FΣ)→ (Θ,≤,FΘ) is a function
φ : Σ→ Θ satisfying:

1. there exists u ∈ FΘ such that for each inequality a ≤ a′ in Σ
we have u(φ(a)) ≤ φ(a′) in Θ (“φ is order-preserving modulo
u”);

2. for all f ∈ FΣ there is g ∈ FΘ with g(φ(a)) ≤ φ(f (a)) (“g
simulates the functional behaviour of f relative to φ”).



The category BCO is order-enriched and has a monad on it, the
Downset monad D, which is Kock-Zöberlein (algebras are left
adjoint to units).
Moreover, for every BCO Σ we have a Set-indexed preorder [−,Σ]:
[X ,Σ] is the set of functions from X to Σ, and for φ, ψ ∈ [X ,Σ]
we have φ ≤ ψ if and only if there is some f ∈ FΣ such that
f (φ(x)) ≤ ψ(x) for all x ∈ X .
We shall be interested in the question: when is [−,Σ] a tripos?



Theorem (Hofstra 2006): Let Σ be a BCO, and [−,Σ] its
associated Set-indexed preorder. Then the following two
statements are equivalent:

1. Σ is an OPCA with filter Φ, so the preorder on [X ,Σ] is given
by: α ≤ β iff there is a ∈ Φ such that for all x ∈ X and
b ∈ α(x), ab ∈ β(x).

2. [−,DΣ] is a tripos.



A refinement: a pre-implicative OPCA is a filtered OPCA A
together with suitable maps

∧
: P(A)→ A and ⇒: A× A→ A.

Theorem (vO–Zou 2016): [−,Σ] is a tripos if and only if Σ is a
pre-implicative OPCA.



III. Dialectica Monads.
In 1958, Gödel published a paper about which he had been mulling
since the early 1940’s: On a hitherto unused extension of the
finitary point of view, in which he sought to reduce the consistency
of Peano Arithmetic to that of the theory of quantifier-free
equations involving primitive recursive functionals of finite type.
In 2002, Martin Hyland (following De Paiva’s Ph.D. thesis) gave a
categorical construction of this interpretation. Suppose we have a
posetal fibration p : P→ T, where T is a category with finite
products. We construct a new category Dial(p):

I objects are triples (U,X , α) with U,X ∈ T and α ∈ pU×X ;

I maps (U,X , α)→ (V ,Y , β) are pairs
f : U → V ,F : U × Y → X of morphisms in T such that for
the morphisms

〈π0,F 〉 : U × Y → U × X
〈f π0, π1〉 : U × Y → V × Y

we have 〈π0,F 〉∗(α) ≤ 〈f π0, π1〉∗(β) in pU×Y



A simple interpretation. Let us think of a fibration of sets.
Consider the following two-move game, between Merlin (evil) and
Arthur (the good guy). Merlin starts by picking u ∈ U, Arthur
responds by picking v ∈ V . Merlin now picks y ∈ Y , and Arthur
picks x ∈ X . End of the game:

M u y

A v x

Now we have special subsets α ⊆ U × X , β ⊆ V × Y , and the
stipulation is that Arthur wins if (v , y) ∈ β whenever (u, x) ∈ α.
Note that Arthur’s choice of x may depend on both Merlin’s
moves u and y . Hence a strategy for Arthur consists of a pair of
functions (f : U → V ,F : U × Y → X ), and if this satisfies
(f (u), y) ∈ β whenever (u,F (u, y) ∈ α for all u, y , then (f ,F ) is a
winning strategy.



Now suppose that α and β are the complements of graphs of
functions A, B respectively. Then taking the contrapositive of the
winning condition, we see that (f ,F ) is a winning strategy if
F (u, y) = A(u) whenever y = B(f (u)), that is: the pair (f ,F )
determines a one-query oracle computation of A with oracle B.

This game can be analyzed further: for a function A we have the
one-move game GA: Merlin picks some ξ, Arthur responds with
σ, and wins if A(ξ) = σ. The “oracle game” above is now a cut-off
version of the “implication game” GB ⇒ GA (in the sense of
Hyland-Ong).



Pieter set out to analyse the Hyland-De Paiva Dialectica
construction as a composition of canonical constructions on
fibrations.
Let p : E → B be a fibration; we assume B has finite products.
Say p has simple coproducts if for every projection I × J

π→ I in B,
the functor π∗ : pI → pI×J has a left adjoint, and these left
adjoints satisfy the Beck-Chevalley condition.
Similarly, one defines simple products. Let pop be the opposite
fibration (i.e. the fibration over B such that (pop)I = (pI )op): then
p has simple products if and only if pop has simple coproducts.



To any fibration p : E → B one can add simple coproducts in a
universal way: let

Fam(E )

��

// E

p

��
B→

dom
// B

be a pullback. Let Fam(p) be the composition

Fam(E ) // B→
cod // B



Fam(p) is the free fibration on p with coproducts; it has a
subfibration Sum(p) which is universal (w.r.t. p) with simple
coproducts.
Similarly, we have Prod(p) = Sum(pop)op.
We have: the operations Sum and Prod have the structure of
pseudo-monads on Fib(p), the category of fibrations on p.
Moreover, there is an appropriate distributive law between them,
guaranteeing that also the composition Sum◦Prod has a
pseudo-monad structure.



Lemma: there is a natural isomorphism of fibrations

Dial(p) ' Sum(Prod(p))

Theorem: Assume B is cartesian closed. Then the pseudo-algebras
for the pseudomodad Dial on Fib(B) are the fibrations with simple
products and coproducts satisfying the distributivity

∀u∃xα(i , u, x) ' ∃f ∀uα(i , fu, u)



Pieter Hofstra was my first PhD student, but also a friend. I recall
with gratitude his hospitality in 2006 when I stayed with him and
Miyoung in Calgary, and had an unforgettable ride in the Rocky
Mountains.
I was also deeply moved when he organized (together with Benno
van den Berg, who was a PhD student of Moerdijk roughly the
same time as Pieter was working with me) a special PSSL
celebrating my and Thomas Streicher’s 60th birthdays, in 2018.
His death is still unthinkable.
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