Classical and Relative Realizability

Jaap van Oosten

Department of Mathematics, Utrecht University

PSSL 100, May 21, 2016 In Honour of Dana Scott Joint work with Tingxiang Zou

Synopsis:

Some history

Analysis of Relative realizability

Streicher-style classical realizability

Booleanisation of closed subtoposes of relative realizability toposes

When are such Boolean toposes localic?

History:

Kleene 1957: gives first definition of relative realizability Kleene-Vesley 1965: relative realizability interpretation of intuitionistic analysis

Late 1990s: revival by Awodey, Birkedal and Scott

Late 1990s: Krivine discovers Classical realizability

1999: JvO visits Pittsburgh, listens to Anne-Sophie Mutter and learns lurid details about Clinton/Lewinsky

2002: paper Birkedal-JvO on Relative and Modified Relative Realizability

2006: paper Hofstra: All realizability is relative

2012: paper Streicher: triposes for classical realizability

BCOs and filtered order-pcas

We start our analysis from the point of view of Hofstra's *Basic Combinatorial Objects*.

A basic combinatorial object (BCO) is a poset (Σ , \leq) together with a set \mathcal{F}_{Σ} of partial endofunctions on Σ , with the following properties:

Each $f \in \mathcal{F}_{\Sigma}$ has downwards closed domain and is order-preserving on its domain

There is $i \in \mathcal{F}_{\Sigma}$ such that for all $x \in \Sigma$, $i(x) \leq x$

For every pair $f, g \in \mathcal{F}_{\Sigma}$ there is $h \in \mathcal{F}_{\Sigma}$ such that whenever g(f(x)) is defined, so is h(x), and $h(x) \leq g(f(x))$

A morphism of BCOs $(\Sigma, \leq, \mathcal{F}_{\Sigma}) \rightarrow (\Theta, \leq, \mathcal{F}_{\Theta})$ is a function $\phi : \Sigma \rightarrow \Theta$ with the properties:

There is $u \in \mathcal{F}_{\Theta}$ such that $a \leq a' \in \Sigma$ implies $u(\phi(a)) \leq \phi(a')$ in Θ

For every $f \in \mathcal{F}_{\Sigma}$ there is $g \in \mathcal{F}_{\Theta}$ such that whenever f(x) is defined, $g(\phi(x)) \leq \phi(f(x))$

For two morphisms $\phi, \psi : \Sigma \to \Theta$ we say $\phi \leq \psi$ if for some $g \in \mathcal{F}_{\Theta}$ we have $g(\phi(x)) \leq \psi(x)$ for all $x \in \Sigma$.

BCOs, morphisms and inequalities form a preorder-enriched category $\mathbb{BCO}.$

 \mathbb{BCO} has finite products, so we can talk about BCOs with *internal finite meets* (the BCO maps $\Sigma \to 1$ and $\Sigma \to \Sigma \times \Sigma$ have right adjoints in \mathbb{BCO}).

There is a 2-monad \mathcal{D} on \mathbb{BCO} : $\mathcal{D}\Sigma$ is the poset of downsets of Σ , with set of partial endomaps defined as follows: $F : \mathcal{D}\Sigma \rightarrow \mathcal{D}\Sigma$ is in $\mathcal{F}_{\mathcal{D}\Sigma}$ if and only if for some $f \in \mathcal{F}_{\Sigma}$ we have:

 $U \in \operatorname{dom}(F)$ iff $U \subseteq \operatorname{dom}(f)$

F(U) is the downwards closure of $\{f(x) | x \in U\}$

The monad \mathcal{D} is a KZ-monad: algebra structures are unique up to isomorphism, and are left adjoint to units.

Every BCO Σ determines a Set-indexed preorder $[-, \Sigma]$: for two functions $\alpha, \beta : X \to \Sigma$, $\alpha \leq \beta$ iff for some $f \in \mathcal{F}_{\Sigma}$ we have $f(\alpha(x)) \leq \beta(x)$ for all $x \in X$

Example: filtered order-pcas.

An order-pca A is a poset (A, \leq) with a partial (application) map $A \times A \rightarrow A$, written $a, b \mapsto ab$, satisfying:

The domain of the application map is downwards closed and application is order-preserving in both variables on its domain

There are elements k, s in A with $kxy \le x$ and $sxyz \le (xz)(yz)$ (whenever xz(yz) is defined).

A *filter* on an order-pca is a subset A', closed under the application map, and containing choices for k and s.

Every order-pca A with filter A' is a BCO, with set of endomaps the maps $x \mapsto ax$, for $a \in A'$.

Note that every meet-semilattice (A, \land, \top) is a filtered order-pca, with \land as application and $\{\top\}$ as filter.

We have a straightforward generalization of Longley's *applicative morphisms* to filtered order-pcas.

Proposition

An applicative morphism of filtered order-pcas is just a BCO map which preserves internal finite meets.

Theorem (Hofstra)

For a BCO Σ , the Set-indexed preorder $[-, D\Sigma]$ is a tripos precisely when Σ is equivalent to a filtered order-pca. We are also interested in the question: when is $[-, \Sigma]$ a tripos?

Theorem (vO-Zou)

For a BCO Σ , the Set-indexed preorder $[-, \Sigma]$ is a tripos precisely when Σ is a filtered order-pca and a pseudo \mathcal{D} -algebra such that the algebra structure $\bigvee : \mathcal{D}\Sigma \to \Sigma$ preserves internal finite meets. We could call such filtered order-pcas lex cocomplete (after Garner-Lack).

Note: this generalizes the infinite distributivity condition for locales.

Corollary

If $[-, \Sigma]$ is a tripos, it is a subtripos of $[-, D\Sigma]$.

Classical Realizability

Definition (Streicher)

An abstract Krivine structure (aks) consists of the following data:

- i) A set Λ of terms, together with a binary operation t, s \mapsto t · s : $\Lambda \times \Lambda \rightarrow \Lambda$, and distinguished elements K, S, α .
- ii) A subset QP of Λ (the set of quasi-proofs), which contains K,S and ∞ , and is closed under the binary operation of i).
- iii) A set Π of stacks together with a 'push' operation

$$t, \pi \mapsto t.\pi : \Lambda \times \Pi \to \Pi$$

as well as an operation

$$\pi \mapsto k_{\pi} : \Pi \to \Lambda$$

iv) A subset \bot (the *pole*) of $\Lambda \times \Pi$, which satisfies the following requirements:

(S1) If
$$(t, s.\pi) \in \mathbb{L}$$
 then $(t \cdot s, \pi) \in \mathbb{L}$
(S2) If $(t, \pi) \in \mathbb{L}$ then $(K, t.s.\pi) \in \mathbb{L}$ (for any term s)
(S3) If $((t \cdot u) \cdot (s \cdot u), \pi) \in \mathbb{L}$ then $(S, t.s.u.\pi) \in \mathbb{L}$
(S4) If $(t, k_{\pi}.\pi) \in \mathbb{L}$ then $(\mathfrak{c}, t.\pi) \in \mathbb{L}$
(S5) If $(t, \pi) \in \mathbb{L}$ then $(k_{\pi}, t.\pi') \in \mathbb{L}$ (for any π')

Given a set U of terms and a set α of stacks, we define

$$U^{\perp} = \{\pi \in \Pi \mid \text{for all } t \in U, (t, \pi) \in \bot\}$$

$$\alpha^{\perp} = \{t \in \Lambda \mid \text{for all } \pi \in \alpha, (t, \pi) \in \bot\}$$

Let $\mathcal{P}_{\perp}(\Pi)$ be $\{\beta \subseteq \Pi \mid \beta^{\perp \perp} = \beta\}$, ordered by *reverse* inclusion. We define an application \bullet on $\mathcal{P}_{\perp}(\Pi)$ by putting

$$\alpha \bullet \beta = \{ \pi \in \Pi \, | \, \text{for all } t \in |\alpha| \text{ and } s \in |\beta|, \, (t, s.\pi) \in \mathbb{L} \}^{\mathbb{L} \mathbb{L}}$$

Moreover, let $\Phi \subseteq \mathcal{P}_{\perp}(\Pi)$ be the set

$$\Phi = \{ \alpha \in \mathcal{P}_{\mathbb{L}}(\mathsf{\Pi}) \, | \, \alpha^{\mathbb{L}} \cap \mathsf{QP} \neq \emptyset \}$$

Theorem (Streicher)

The set $\mathcal{P}_{\mathbb{L}}(\Pi)$ forms, together with the given application, a total order-ca, and Φ is a filter in it. The Set-indexed preorder $[-, \mathcal{P}_{\mathbb{L}}(\Pi)]$ is a Boolean tripos.

A tripos of this form is called a Krivine tripos.

Given a filtered order-pca (A, A') and a downwards closed set $U \subseteq A - A'$, we can produce an abstract Krivine structure, giving (by Streicher's construction) a filtered order-ca $\mathcal{P}(\Pi)^U_{A,A'}$.

Proposition

The tripos $[-, \mathcal{P}(\Pi)_{A,A'}^U]$ is equivalent to the subtripos of $[-, \mathcal{D}(A, A')]$ given by the local operator $((-) \Rightarrow U) \Rightarrow U$.

Corollary

Every Krivine tripos is the Booleanisation of a closed subtripos of a relative realizability tripos.

Proposition

The tripos $[-, \mathcal{P}(\Pi)_{A,A'}^U]$ is localic if and only if there exists an element $e \in A'$ with the following property:

whenever $ba \in U$ for some $b \in A'$, then $ea \in U$

Example

- 1. If U = A A' then $[-, \mathcal{P}(\Pi)^U_{A,A'}]$ is localic.
- There is a "Turing reducibility" preorder ≤_T on A: a ≤_T a' iff for some b ∈ A', ba' ≤ a. Note: a ≤ a' implies a' ≤_T a. Suppose U is upwards closed w.r.t. ≤_T (hence downwards closed w.r.t. ≤). Then [-, P(Π)^U_{A,A'}] is localic.
- Consider the pca K₂ = N^N with filter the set Rec of total recursive functions; let U be a set of non-recursive functions. If U is discrete in the subspace topology of N^N, then [-, P(Π)^U_{K₂,Rec}] is non-localic.

Next Project

Can Krivine's models for ZF be constructed as initial ZF-algebras in these boolean subtoposes of relative realizability toposes?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ