
Partial Combinatory Algebras – Between
realizability and oracle computations

Jaap van Oosten

Department of Mathematics
Utrecht University

Tulips Seminar, March 16, 2023



Computability Theory
A function f : U → N for U ⊆ N is called a partial function on N;
note that a partial function may be total (in case U = N).
Such a function is computable if there is a Turing machine T such
that for all n ∈ N we have:

I if n ∈ U then T , with input n, reaches a halting state and
outputs f (n);

I if T , with input n, reaches a halting state then n ∈ U.

Think of a Turing machine as a program in a very primitive
computer language.



We can enumerate all Turing machines: T1,T2, . . .. To every Ti

corresponds a partial function φi as before; the domain of φi is the
set

{n ∈ N |Ti reaches a halting state with input n}

We may write nm for φn(m). This is not associative; when we
write n1n2 · · · nk we mean (· · · ((n1n2)n3) · · · )nk .
Since the φi are partial functions, such expressions need not
denote anything. We write: nm ↓ to indicate that m is in the
domain of φn.



Subsets of Nk are, in computability theory, often called ‘problems’;
the ‘problem’ is to decide by an algorithm whether or not a given
k-tuple of natural numbers is an element of that set. The
algorithm (which we identify with a Turing machine) is then a
‘solution’ of the problem. One of the oldest such problems was the
Halting Problem (Turing): the set

H = {(n,m) |m is in the domain of φn}

And Turing proved:
Theorem The halting problem is unsolvable (i.e., has no solution).
One also says that H is an undecidable set.



The theory of computability aims to classify subsets of Nk in terms
of ‘difficulty to calculate’. An important tool is the notion of
Turing reducibility: for subsets A,B of Nk , the notation A ≤T B
(A is Turing reducible to B) if a Turing machine can decide the
question ‘n ∈ A?’ provided it has access to answers to ‘m ∈ B?’
(for example, by consulting a database for B). Turing said the
machine may ‘consult an oracle’.



Examples of similar structures:
K2 (“Kleene’s second model”) is the set NN of functions from N to
N. We assume a coding of sequences 〈a0, . . . an−1〉. For functions
α, β, we let αβ ↓ if and only if for each natural number n there is
some k such that

α(〈n, β(0), . . . , β(k − 1)〉) > 0

and we let αβ(n) = α(〈n, β(0), . . . , β(k − 1)〉)− 1 for the least
such k.
Note that we may view the definition of αβ as an ‘oracle
consultation’: α consults the oracle β a number of times, until it
decides it has enough information.
We may restrict the structure K2 to the computable functions: we
write Krec

2 .



Examples of similar structures (continued)
A total structure of this kind was defined by Dana Scott: let S be
the powerset of N. We assume bijections:

〈·, ·〉 : N2 → N
e− : N→ Pfin(N)

Let AB = {y | for some n, en ⊆ B and 〈n, y〉 ∈ A} The functions
φA are continuous when S is given the Scott topology: identify S
with the set of all functions N→ {0, 1}; give {0, 1} the Sierpinski
topology (with {1} the one nontrivial open set) and S the product
topology).



There is a common axiomatics underlying these structures; we
speak of Partial Combinatory Algebras (PCAs).
The final abstract definition is due to Solomon Feferman (1975),
but the basic idea (restricting to total computations) was laid out
by M. Schönfinkel around 1920.
Peter Johnstone therefore calls PCAs “Schönfinkel algebras”.
Which prompts the following short biographical intermezzo:





Moses Ilyich (or is it Isayevich?) Schönfinkel is one of the more
mysterious figures in the history of logic. He was born in 1889 (or
was it 1887?) in Ukraina. He worked from 1914 (!) to 1924 under
Hilbert in Göttingen, during which period one paper appeared:
Über die Bausteine der mathematischen Logik in Mathematische
Annalen 92, 1924. However, this paper appears to have been
written by someone else, who took notes during lectures by
Schönfinkel.
A second paper, coauthored by Bernays, appeared in 1927; by this
time, however, Schönfinkel was already in a mental hospital in
Moscow.
He died in 1942 in Moscow; his papers were used for firewood by
his neighbours.
Stephen Wolfram, who has a voluminous piece about Schönfinkel
on his web page, also relates that his mother was from a family
called “Lurie”; and the Lurie’s were business partners of father
Schönfinkel.



A Partial Combinatory Algebra is a set A with a partial binary
operation (a, b) 7→ ab and special elements k and s, which satisfy:

kx ↓
(ka)b = a

(sa)b ↓

and: if ac(bc) ↓ then sabc ↓ and

sabc = (ac)(bc)

.
The letter k stands for “Konstante Funktion”; the letter s is
mysteriously called “Verschmelzungsfunktion” (blending function).
The original (Schönfinkel’s) aim: to provide an alternative
foundation of mathematics in which not sets, but functions are the
primitive notion.



We use the following conventions for brackets and other notations:
a statement t = s implies that t, s and all their subterms are
defined.
We write t � s to mean: if s ↓ then t = s. We write t ' s to
mean t � s and s � t.
Examples: sabc � ac(bc); k(bx) ' bx .



Basic facts about PCAs
Let A be a PCA.
We consider expressions obtained from variables (x , y , z , u, v , . . .),
elements of A (a, b, c, . . .), and the juxtaposition operation: e.g.,
x , a, x(ab)y , xayb.
For any such expression t in variables x0, . . . , xn there is an
element Λx0 · · · xn.t with the following properties: for each tuple
a0, . . . , an from A we have

I (Λx0 · · · xn.t)a0 · · · an−1 ↓
I (Λx0 · · · xn.t)a0 · · · an � t(a0, . . . , an)

For example: for Λx .x one can take skk: skka = ka(ka) = a.
Let p = Λxyz .zxy so pab = Λz .zab; let p0 = Λv .vk and let
p1 = Λv .v(Λwu.u). Then p0(pab) = a and p1(pab) = b so p is an
ordered pair operator, with unpairings p0 and p1.
There are also Booleans t and f and a definition by cases term C
satisfying C tab = a and C fab = b.



Some Computability theory in a PCA A
There is a copy of N in A: {n̄ | n ∈ N}, the Curry numerals.
For every k-ary partial recursive function φ there is an element aφ
of A simulating φ: for all n1, . . . , nk ∈ N,

aφn̄1 · · · n̄k � φ(n1, . . . , nk)

We can manipulate finite sequences 〈a0, . . . , ak−1〉 of elements of
A. For example we have for suitable c, d ∈ A:

cī〈a0, . . . , ak−1〉 = ai
d〈a0, . . . , ak−1〉 = k̄



Some Computability theory in a PCA A (continued) We have a
recursion theorem in every PCA A: there are elements y, z
satisfying, for each f ∈ A:

i) yf � f (yf )

ii) zf ↓
iii) zfx � f (zf )x for all x ∈ A.

Theorem. Let A be a PCA. For every computable function F on
the natural numbers, there is an element φ of A satisfying
φn ' F (n) (here n is the Curry numeral corresponding to the
natural number n).



Applicative morphisms of PCAs
Let A,B be PCAs. An applicative morphism A→ B is a total
relation γ (we think of γ as a function from A to the set of
nonempty subsets of B, so (A, γ) is an assembly over B) for which
there is an element r ∈ B which satisfies:
For each pair a, a′ of elements of A and b ∈ γ(a), b′ ∈ γ(a′), if
aa′ ↓ in A then rbb′ ↓ in B, and rbb′ ∈ γ(aa′).
The element r realizes the morphism γ. Composition of morphisms
is composition of total relations.
We think of γ as a simulation in B of computations in A; the
element r is a machine that translates code for an A-program into
code for a B-program.



Examples of applicative morphisms
δ1 : K1 → A: δ1(n) = {n̄} is the essentially unique applicative
morphism K1 → A (up to a suitable notion of isomorphism of
applicative morphisms)
δ2 : Krec

2 → K1: δ2(φ) = {e ∈ N |φ = ϕe}. Think of what a
realizer of this morphism does; how it simulates the action of Krec

2

in K1!
There are interesting applicative morphisms between K2 and S in
both directions.



Computations in PCAs with an oracle
Let γ : A→ B be an applicative morphism. A partial function
f : A⇀ A is representable w.r.t. γ if there is an element b ∈ B
satisfying: for each a ∈ A, if f (a) ↓ then bγ(a) ⊆ γ(f (a)).
Theorem (vO 2006): Given PCA A and partial function f on A,
there is a PCA A[f ] which is universal with the property that there
is a decidable applicative morphism ιf : A→ A[f ] w.r.t which f is
representable: if γ : A→ B is decidable and f is representable
w.r.t. γ, then γ factors uniquely through ιf :

A
ιf //

γ
!!B

BB
BB

BB
BB

A[f ]

��
B

Applying this construction to K1 gives us the PCA of
“computations with oracle f ”.



Note, that this construction gives us a notion of “Turing
reducibility in A”: if f and g are partial functions on A, then
f ≤T g if and only if f is representable w.r.t. ιg : A→ A[g ].

Equivalently: for every decidable applicative morphism A
γ→ B we

have: if g is representable w.r.t. γ, then so is f .



An extension of the “oracle” result (Faber/vO 2016)
Given a PCA A, we can define what we call an “effective operation
of type 2” in A, and we have, for any partial function F : AA ⇀ A
a similar universal solution for “forcing F to be an effective
operation”: a decidable applicative morphism ιF : A→ A[F ] with
the expected universal property.
We have the following result (which should not come unexpected):
For the Kleene functional E (E (f ) = 0 if and only if ∃nf (n) = 0)
we have: a function N→ N is representable w.r.t. K1[E ] if and
only if the function f is hyperarithmetical.
This opens up the possibility of “realizability with
hyperarithmetical functions”; this is a sheaf subtopos of the
effective topos in which there is a model of Peano Arithmetic (with
classical logic!). Such a model cannot exist in the effective topos.



In a recent paper, Jetze Zoethout takes this one step further. He
explains why a straightforward extension to“third-order
functionals” is not to be expected; however, employing a “lax”
version of PCAs (the equations hold “up to inequality”) one can
obtain, for such a PCA A and third-order Φ, a PCA A[Φ] enjoying
a weaker universal property.



Realizability
I restrict myself to the PCA K1, although a lot of it generalizes to
arbitrary PCAs.
For any set X , we have a preorder structure on the set P(N)X of
functions from X to the powerset of N:
φ ≤ ψ iff there is e such that for all x ∈ X and all n ∈ φ(x), en↓
and en ∈ ψ(x).
We call this the realizability preorder. It is a Heyting prealgebra:
we have

φ ∧ ψ(x) = {〈n,m〉 | n ∈ φ(x),m ∈ ψ(x)}
φ→ ψ(x) = {e | ∀n ∈ φ(x)en ∈ ψ(x)}

and we have similar definitions of ∨, >, ⊥, ∃, ∀. So we have a
realizability interpretation of first-order intuitionistic logic.



A function β : P(N)→ P(N) is monotone if the statement

∀p, q ∈ P(N)(p → q)→ (β(p)→ β(q))

is true under the realizability interpretation.
The function β is a Lawvere-Tierney topology if moreover it
satisfies:

∀p(p → β(p))
∀p, q(β(p) ∧ β(q)→ β(p ∧ q))
∀p(β(β(p))→ β(p))

Again, in the realizability interpretation. Note: if we define ¬p to
be p → ∅, so

¬¬(p) =

{
N if p 6= ∅
∅ otherwise

then ¬¬ is an example of a Lawvere-Tierney topology.



But, the structure of Lawvere-Tierney topologies is way more
complicated!
Hyland proved: there is an embedding of the Turing degrees into
the set of Lawvere-Tierney topologies.
Together with Sori Lee, I investigated further structure.
Very nice recent work has been done by Takeyuki Kihara.



As a warming up, consider partial multifunctions on N: these are
partial, multi-valued functions f :⊆ N⇒ N.
We have a notion of Turing reducibility between these, which can
be described in terms of a game between players Merlin and
Arthur. Given two partial multifunctions f , g , the game G (f , g)
proceeds as follows:
Merlin starts by calling a number x0. At the n-th round, Arthur
has a choice: either he responds yn = 〈0, un〉, or he responds
yn = 〈1, vn〉 in which case the game is over.

Merlin x0 x1 x2 · · ·
Arthur y0 y1 y2 · · ·



The rule of the game is: Merlin’s first bid, x0, must be an element
of the domain of definition of f . If Arthur’s n-th move is 〈0, un〉
then un must be in the domain of g , and Merlin’s response xn+1

must be an element of g(un). If Arthur terminates the game with
〈1, vn〉, then we must have vn ∈ f (x0).
Arthur wins the game if he can successfully terminate in the sense
above, or Merlin is not able to comply with the rule.
Definition. The partial multifunction f is Turing reducible to g ,
f ≤T g , if Arthur has a winning strategy for the game G(f,g).
Examples: if f is the empty function then f ≤T g for all g : Merlin
cannot make a legal opening move. If g is such that for some n,
g(n) = ∅, then Arthur wins by putting y0 = 〈0, n〉, and Merlin is
unable to respond.



Now we consider what we call bilayer functions: partial
multifunctions f :⊆ N× Λ⇒ N for an arbitrary set Λ. The
elements of Λ are thought of as “secret inputs”. The public
domain of f , dompub(f ) is the set of those numbers n for which
there exists c ∈ Λ such that (n, c) ∈ dom(f ).
Given two bilayer functions f , g , we have a game G (f , g) between
3 players: Merlin, Arthur and Nimue. Merlin and Nimue are
creatures from the underworld and have access to secret
information. Arthur is human and sees only the public part.
However, Nimue is a benign nymph who helps Arthur in his quest.
Merlin starts by calling (x0, c0) (Arthur sees only x0). At te n-th
round, Arthur plays either 〈0, un〉 or 〈1, un〉 in which latter case the
game is over.
Nimue, at the n-th round (and the game is not over, so Arthur’s
move was 〈0, un〉), plays zn ∈ Λ (again, not observable by Arthur).
At his n + 1-st round, Merlin responds by playing xn+1.



Merlin (x0, c0) x1
Arthur y0 y1 · · ·
Nimue z0 z1

Rules: Merlin’s first bid, (x0, c0) must be in dom(f ).
If Arthur responds yn = 〈0, un〉 then we must have
un ∈ dompub(g), so for some z ∈ Λ, (un, z) ∈ dom(g).
If Arthur responds 〈1, un〉 then un ∈ f (x0, c0).
If Arthur has played 〈0, un〉 then Nimue chooses zn ∈ Λ satisfying
(un, zn) ∈ dom(g).
On his n + 1-st round, Merlin picks xn+1 ∈ g(un, zn).
Arthur and Nimue win the game if either Merlin is unable to
comply with the rule, or Arthur terminates with un ∈ f (x0, c0).



Definition. For two bilayer functions f , g : f ≤T g (f is Turing
reducible to g) if Arthur/Nimue have a winning strategy for the
game G (f , g).
We have a preorder of bilayer functions and Turing reducibility.
Theorem (Kihara) The preorder of bilayer functions and Turing
reducibility is equivalent to the preorder of Lawvere-Tierney
topologies.



Thanks


