# Exam Advanced Topics in Logic A 

November 10, 2005, 14.00-17.00
THIS EXAM CONSISTS OF 4 PROBLEMS
Advice: first do those problems you can do right away; then, start thinking about the others. Good luck!

## Problem 1:

a) Prove that the function $F(x)=x \underbrace{!\cdots!}_{x}$ ( $x$ with $x$ factorials) is primitive recursive.
b) The same for the function $G(x)=\underbrace{F(F(\cdots(F}_{F(x)}(x)) \cdots))(F(x)$ iterations of $F$ ), where $F$ is the function of part a).
[Hint: in both cases, first define a suitable function of two arguments]

## Problem 2:

Show that for every total recursive function $F$ there is a total recursive function $G$ with the properties:
i) For every $x, F(x) \leq G(x)$;
ii) the set $\{j(n, G(n)) \mid n \in \mathbb{N}\}$ is primitive recursive.
[Hint: use the Kleene T-predicate]

## Problem 3:

For a theory $T$ in the language of PA we say that $T$ is recursive if the set $\{\ulcorner\phi\urcorner \mid T \vdash \phi\}$ is recursive.
a) Show that if $T$ is consistent and recursive, there is a consistent, recursive extension $T^{\prime}$ of $T$ such that $T^{\prime}$ is complete.
[Hint: use a recursive enumeration of all codes of sentences in the language]
b) Conclude from a) that the theory PA is not recursive.

## Problem 4:

Recall that $\square \phi$ is short for $\exists x \overline{\operatorname{Prf}}(x, \overline{\ulcorner\phi\urcorner})$. The following three properties hold:

| D1 | $\mathrm{PA} \vdash \phi \Rightarrow \mathrm{PA} \vdash \square \phi$ |
| :--- | :--- |
| D 2 | $\mathrm{PA} \vdash(\square(\phi \rightarrow \psi) \wedge \square \phi) \rightarrow \square \psi$ |
| D 3 | $\mathrm{PA} \vdash \square \phi \rightarrow \square \square \phi$ |

By the Diagonalization Lemma, there is a sentence $\phi$ in the language of PA, such that

$$
\operatorname{PA} \vdash \phi \leftrightarrow \square(\phi \rightarrow \neg \square \phi)
$$

a) Using only D1 and D2, show that $\phi$ is independent of PA , that is, neither $\phi$ nor $\neg \phi$ are theorems of PA.
b) Again using only D1 and D2, argue that the sentence $\phi$ is false in the standard model.
c) Using D1-D3, prove that $\mathrm{PA} \vdash \phi \leftrightarrow$

