Exam Computability Theory

January 10, 2012, 14.00–17.00

This exam consists of 5 exercises; see also the back side Advice: first do those exercises you can do straight away; then start thinking about the others. SUCCES!

Exercise 1:

Prove that the following functions are primitive recursive:

- a) $\log(x)$, defined as: $\log(0) = 0$, and for x > 0, $\log(x)$ is the unique n such that $2^n \le x < 2^{n+1}$
- b) the function f, where f(x) is the number of divisors of x if x > 0, and f(0) = 0

Exercise 2:

Prove that there is no partial recursive function F with the following properties:

- i) if φ_e is total then F(e) is defined
- ii) if φ_e is total and for some m, $\varphi_e(m) = 0$ and $\forall n < m \varphi_e(n) \neq 1$ then F(e) = 0
- iii) if φ_e is total and for some m, $\varphi_e(m) = 1$ and $\forall n < m \varphi_e(n) \neq 0$ then F(e) = 1

[Hint: apply the recursion theorem]

Exercise 3:

By Tot we denote the set $\{e \mid \varphi_e \text{ is total}\}$. For each of the following sets A, determine whether or not A is many-one reducible to Tot. Justify your answers.

- a) $A = \{e \mid \varphi_e \text{ is total and not eventually constant}\}$
- b) $A = \mathcal{K}$, the standard set
- c) $A = \{e \mid W_e \text{ contains infinitely many powers of } 2\}$

Exercise 4:

For the following sets A, classify A in the arithmetical hierarchy. That is: find a smallest possible n and state that $A \in \Pi_n$, $A \in \Sigma_n$ or $A \in \Delta_n$; and prove that this is so. You are *not* required to prove that your classification is optimal.

a)
$$A = \begin{cases} e \mid \text{ there are } x_1 < x_2 < \dots < x_e \in \operatorname{dom}(\varphi_e) \\ \text{ such that } \varphi_e(x_1) < \dots < \varphi_e(x_e) \end{cases}$$

b) $A = \{e \mid \varphi_e \text{ is total and strictly increasing}\}$

c) $A = \{ e \mid \text{for every } x, \operatorname{dom}(\varphi_e) \cap \{x, x+1\} \\ \text{contains exactly one element} \}$

Exercise 5:

Let G be the Gödel sentence for PA; we have PA $\not\vdash G$ and PA $\not\vdash \neg G$. Let $\operatorname{Prov}(x)$ be the formula (in the language of PA) which expresses that there is a formal proof in PA of the formula with Gödel number x.

a) Show that there is a sentence ϕ in the language of PA such that

$$\mathsf{PA} \vdash \phi \leftrightarrow \neg \mathsf{Prov}(\overline{\ulcorner G \to \phi \urcorner})$$

b) Let ϕ be as in a). Show that $PA + G \not\vdash \phi$.