Exam Computability Theory

May 27, 2013, 14.15–17.15 With Solutions

This exam consists of 5 exercises; see also the back side. Every exercise is worth 10 points; in case the exercise is divided into parts, it is indicated at each part how much this part is worth.

Advice: first do those exercises you can do straight away; then start thinking about the others.

Good Luck!

Exercise 1:

Prove that the following functions are primitive recursive:

- a) (5) $F(x) = x \underbrace{! \cdots !}_{x \text{ times}}$
- b) (5) The function F which is such that F(x) = 0 for $x \le 1$, and for x > 1, F(x) is the cardinality of the set $\{y \mid 1 \le y < x, \gcd(y, x) = 1\}$

Solution: a) Define the function G(y, x) by G(0, x) = x and G(y + 1, x) = G(y, x)!. Since the function $x \mapsto x!$ is primitive recursive, G is primitive recursive (being defined by primitive recursion from the factorial function). Now F(x) = G(x, x), so F is defined by composition from G. b) Define G(y, x) as follows: G(0, x) = 0 and

$$G(y+1,x) = \begin{cases} 0 & \text{if } y = 0\\ G(y,x) & \text{if } y > 0 \text{ and } \gcd(y+1,x) > 1\\ G(y,x)+1 & \text{otherwise} \end{cases}$$

Then since gcd is primitive recursive and G is defined by primitive recursion from gcd and definition by cases from primitive recursive relations, G is primitive recursive. Now F(x) = G(x, x).

Exercise 2:

Prove that the following problems are unsolvable with respect to indices of total functions:

- a) (5) $\exists x | e \cdot x e \cdot (x+1) |$ is even
- b) (5) $e \cdot e \in \mathcal{K}$ (where \mathcal{K} is the standard set)

Solution: a) Suppose f were an index such that for all e with ϕ_e total, $f \cdot e$ is defined and $f \cdot e = 0$ if and only if $\exists x | e \cdot x - e \cdot (x + 1) |$ is even. By the Recursion Theorem, there is an index a satisfying for all x:

$$a \cdot x \simeq \begin{cases} x & \text{if for no } k \le x, T(1, f, a, k) \text{ and } U(k) > 0 \\ 2 & \text{otherwise} \end{cases}$$

Then ϕ_a is total, hence $f \cdot a$ is defined; but if $f \cdot a = 0$ then $a \cdot x = x$ for all x so $|a \cdot x - a \cdot (x+1)|$ is never even. And if $f \cdot a > 0$ then from some point on, ϕ_a is constant with value 2 so then for all x large enough, $|a \cdot x - a \cdot (x+1)|$ is even. This is a contradiction with the assumption on f.

b): there is a primitive recursive function F such that for all $e, \phi_{F(e)}$ is total and $F(e) \cdot F(e) = e$. Namely, choose an index f such that $f \cdot (e, x) = e$ for all e, x and let $F(e) = S_1^1(f, e)$. Now clearly $F(e) \cdot F(e) \in \mathcal{K}$ if and only if $e \in \mathcal{K}$ so if the property in b) were decidable for indices of total functions, then \mathcal{K} would be recursive; quod non.

Exercise 3:

We consider the set $A = \{e \mid W_e \text{ has at most } e \text{ elements}\}.$

- a) (5) Show that A is a Π_1 -set.
- b) (5) Show that A is not a Σ_1 -set, by reducing $\mathbb{N} \mathcal{K}$ to A.

Solution: a) $e \in A$ holds if and only if for all σ : if $h(\sigma) = e + 1$ and $\forall i \leq e T(1, e, j_1((\sigma)_i), j_2((\sigma)_i))$, then $\exists i, k \leq e \ (i \neq k \land j_1((\sigma)_i) = j_1((\sigma)_k))$. Therefore $A = \{e \mid \forall \sigma R(e, \sigma)\}$ for some primitive recursive relation R; so A is a Π_1 -set.

b): Let, by the Recursion Theorem, f be an index such that

$$f \cdot (e, x) \simeq \begin{cases} 0 & \text{if } x < S_1^1(f, e) \\ e \cdot e & \text{otherwise} \end{cases}$$

Then for $F(e) = S_1^1(f, e)$ we have: $W_{F(e)}$ has at most F(e) elements, if and only if $e \cdot e$ is undefined, so if and only if $e \in \mathbb{N} - \mathcal{K}$. We see that $(\mathbb{N} - \mathcal{K}) \leq_m A$. Since $\mathbb{N} - \mathcal{K}$ is *m*-complete in Π_1 , A is.

Exercise 4:

We consider the set $A = \{e \mid \phi_e \text{ is total and eventually constant}\}$. Here, 'F is eventually constant' means: for some $n, \forall k, l > n$ (F(k) = F(l)).

a) (3) Show that A is not recursively enumerable.

- b) (4) Classify A in the arithmetical hierarchy: give a number n (as small as you can) and show that A is Σ_n , Π_n or Δ_n .
- c) (3) Show that your classification is best possible.

Solution: a) Considering that A is extensional for indices of partial recursive functions, this is more or less immediate from the Myhill-Shepherdson Theorem.

b) A can be written as the intersection of two sets A_1 and A_2 :

$$\begin{array}{rcl} A_1 &=& \{e \,|\, \forall x \exists y \, T(1, e, x, y)\} \\ A_2 &=& \{e \,|\, \exists n \forall k lmr \, (T(1, e, k, l) \wedge T(1, e, m, r) \wedge k, m > n) \to U(l) = U(r)\} \end{array}$$

Now A_1 is Π_2 and A_2 is Σ_2 , so both sets are in Δ_3 . Because Δ_3 is closed under intersections, A is a Δ_3 -set.

c) In order to show that A is not in Π_2 , take a set B which is m-complete in Σ_2 and prove $B \leq_m A$. For example, $B = \{e | \operatorname{rge}(\phi_e) \text{ is finite}\}$. Let f be an index such that

$$f \cdot (e, x) \simeq \max\{U(k) \mid k \le x \text{ and } \exists w \le xT(1, e, w, k)\}$$

Then for $F(e) = S_1^1(f, e)$, $\phi_{F(e)}$ is total (so $F(e) \in A_1$), and $F(e) \in A_2$ if and only if $\operatorname{rge}(\phi_e)$ is finite. Hence F reduces B to A, as desired.

In order to show that A is not in Σ_2 , take a set B which is m-complete in Π_2 and prove $B \leq_m A$. Here we can take $B = \{e \mid \phi_e \text{ is total}\}$. Let f be such that

$$f \cdot (e, x) \simeq \begin{cases} 0 & \text{if } e \cdot x \text{ is defined} \\ \text{undefined} & \text{otherwise} \end{cases}$$

Then for $F(e) = S_1^1(f, e)$, F(e) is always in A_2 , and $F(e) \in A_1$ if and only if ϕ_e is total (which is, if $e \in B$). So again F reduces B to A.

Exercise 5:

We consider every function $F : \mathbb{N} \to \mathbb{N}$ as a directed graph with set of points \mathbb{N} : for $n, m \in \mathbb{N}$, we have an edge from n to m if and only if F(j(n, m)) = 0. In such a graph, a *path* from m to n is a sequence of edges, such that each edge starts where the previous one ends, and the first one starts at m and the last one ends at n. A graph is *connected* if for each n and m, there is either a path from m to n or a path from n to m.

a) (5) Show that the set $\{F \mid F, \text{ considered as a graph, is connected}\}$ is a Π_2^0 -subset of $\mathbb{N}^{\mathbb{N}}$

b) (5) Show that the set $\{F \mid \text{there is no infinite path in } F\}$ is not arithmetical.

Solution: a) The given set consists of those F satisfying: for all m, n, either there is σ with $(\sigma)_0 = m$ and $(\sigma)_{\ln(\sigma)-1} = n$ and $\forall i < \ln(\sigma) - 1 F(j((\sigma)_i, (\sigma)_{i+1})) = 0$, or there is such a σ in the other direction (interchange the roles of m and n). So this is of the form $\forall nm \exists \sigma [\cdots]$ with $[\cdots]$ recursive. Hence the set is Π_2^0 .

b) This should have reminded you of the set WfRec of indices of characteristic functions of recursive well-founded trees. There is a primitive recursive function F such that for all x,

$$F(x) \cdot j(\sigma, \tau) \simeq \begin{cases} 0 & \text{if } x \cdot \sigma = x \cdot \tau = 0 \text{ and} \\ h(\tau) = h(\sigma) + 1 \text{ and } \forall i < h(\sigma) (\sigma)_i = (\tau)_i \\ 1 & \text{if } x \cdot \sigma \text{ and } x \cdot \tau \text{ are defined but the condition} \\ above \text{ does not hold} \\ \text{undefined} & \text{if } x \cdot \sigma \text{ or } x \cdot \tau \text{ is undefined} \end{cases}$$

Then if ϕ_x is the characteristic function of a recursive tree, $\phi_{F(x)}$ is total, and $\phi_{F(x)}$, considered as a graph, has no infinite path precisely when ϕ_x is the characteristic function of a recursive well-founded tree. So if the set $A = \{F \mid \text{there is no infinite path in } F\}$ were arithmetical, then the set $\{x \mid \phi_x \in A\}$ would be an arithmetical subset of \mathbb{N} . However, it is *m*-complete in Π_1^1 by Theorem 6.3.3 in the notes.