Exam Computability Theory

May 27, 2013, 14.15-17.15
With Solutions
This exam consists of 5 exercises; see also the back side. Every exercise is worth 10 points; in case the exercise is divided into parts, it is indicated at each part how much this part is worth.
Advice: first do those exercises you can do straight away; then start thinking about the others.
Good Luck!

Exercise 1:

Prove that the following functions are primitive recursive:
a) (5) $F(x)=x \underbrace{!\cdots!}_{x \text { times }}$
b) (5) The function F which is such that $F(x)=0$ for $x \leq 1$, and for $x>1, F(x)$ is the cardinality of the set $\{y \mid 1 \leq y<x, \operatorname{gcd}(y, x)=1\}$

Solution: a) Define the function $G(y, x)$ by $G(0, x)=x$ and $G(y+1, x)=$ $G(y, x)$!. Since the function $x \mapsto x$! is primitive recursive, G is primitive recursive (being defined by primitive recursion from the factorial function). Now $F(x)=G(x, x)$, so F is defined by composition from G.
b) Define $G(y, x)$ as follows: $G(0, x)=0$ and

$$
G(y+1, x)=\left\{\begin{array}{lr}
0 & \text { if } y=0 \\
G(y, x) & \text { if } y>0 \text { and } \operatorname{gcd}(y+1, x)>1 \\
G(y, x)+1 & \text { otherwise }
\end{array}\right.
$$

Then since gcd is primitive recursive and G is defined by primitive recursion from gcd and definition by cases from primitive recursive relations, G is primitive recursive. Now $F(x)=G(x, x)$.

Exercise 2:

Prove that the following problems are unsolvable with respect to indices of total functions:
a) (5) $\exists x|e \cdot x-e \cdot(x+1)|$ is even
b) (5) $e \cdot e \in \mathcal{K}$ (where \mathcal{K} is the standard set)

Solution: a) Suppose f were an index such that for all e with ϕ_{e} total, $f \cdot e$ is defined and $f \cdot e=0$ if and only if $\exists x|e \cdot x-e \cdot(x+1)|$ is even. By the Recursion Theorem, there is an index a satisfying for all x :

$$
a \cdot x \simeq \begin{cases}x & \text { if for no } k \leq x, T(1, f, a, k) \text { and } U(k)>0 \\ 2 & \text { otherwise }\end{cases}
$$

Then ϕ_{a} is total, hence $f \cdot a$ is defined; but if $f \cdot a=0$ then $a \cdot x=x$ for all x so $|a \cdot x-a \cdot(x+1)|$ is never even. And if $f \cdot a>0$ then from some point on, ϕ_{a} is constant with value 2 so then for all x large enough, $|a \cdot x-a \cdot(x+1)|$ is even. This is a contradiction with the assumption on f.
b): there is a primitive recursive function F such that for all $e, \phi_{F(e)}$ is total and $F(e) \cdot F(e)=e$. Namely, choose an index f such that $f \cdot(e, x)=e$ for all e, x and let $F(e)=S_{1}^{1}(f, e)$. Now clearly $F(e) \cdot F(e) \in \mathcal{K}$ if and only if $e \in \mathcal{K}$ so if the property in b) were decidable for indices of total functions, then \mathcal{K} would be recursive; quod non.

Exercise 3:

We consider the set $A=\left\{e \mid W_{e}\right.$ has at most e elements $\}$.
a) (5) Show that A is a Π_{1}-set.
b) (5) Show that A is not a Σ_{1}-set, by reducing $\mathbb{N}-\mathcal{K}$ to A.

Solution: a) $e \in A$ holds if and only if for all σ : if $\operatorname{lh}(\sigma)=e+1$ and $\forall i \leq e T\left(1, e, j_{1}\left((\sigma)_{i}\right), j_{2}\left((\sigma)_{i}\right)\right)$, then $\exists i, k \leq e\left(i \neq k \wedge j_{1}\left((\sigma)_{i}\right)=j_{1}\left((\sigma)_{k}\right)\right)$. Therefore $A=\{e \mid \forall \sigma R(e, \sigma)\}$ for some primitive recursive relation R; so A is a Π_{1}-set.
b): Let, by the Recursion Theorem, f be an index such that

$$
f \cdot(e, x) \simeq\left\{\begin{aligned}
0 & \text { if } x<S_{1}^{1}(f, e) \\
e \cdot e & \text { otherwise }
\end{aligned}\right.
$$

Then for $F(e)=S_{1}^{1}(f, e)$ we have: $W_{F(e)}$ has at most $F(e)$ elements, if and only if $e \cdot e$ is undefined, so if and only if $e \in \mathbb{N}-\mathcal{K}$. We see that $(\mathbb{N}-\mathcal{K}) \leq_{m} A$. Since $\mathbb{N}-\mathcal{K}$ is m-complete in Π_{1}, A is.

Exercise 4:

We consider the set $A=\left\{e \mid \phi_{e}\right.$ is total and eventually constant $\}$. Here, ' F is eventually constant' means: for some $n, \forall k, l>n(F(k)=F(l))$.
a) (3) Show that A is not recursively enumerable.
b) (4) Classify A in the arithmetical hierarchy: give a number n (as small as you can) and show that A is Σ_{n}, Π_{n} or Δ_{n}.
c) (3) Show that your classification is best possible.

Solution: a) Considering that A is extensional for indices of partial recursive functions, this is more or less immediate from the Myhill-Shepherdson Theorem.
b) A can be written as the intersection of two sets A_{1} and A_{2} :

$$
\begin{aligned}
& A_{1}=\{e \mid \forall x \exists y T(1, e, x, y)\} \\
& A_{2}=\{e \mid \exists n \forall k \operatorname{lmr}(T(1, e, k, l) \wedge T(1, e, m, r) \wedge k, m>n) \rightarrow U(l)=U(r)\}
\end{aligned}
$$

Now A_{1} is Π_{2} and A_{2} is Σ_{2}, so both sets are in Δ_{3}. Because Δ_{3} is closed under intersections, A is a Δ_{3}-set.
c) In order to show that A is not in Π_{2}, take a set B which is m-complete in Σ_{2} and prove $B \leq_{m} A$. For example, $B=\left\{e \mid \operatorname{rge}\left(\phi_{e}\right)\right.$ is finite $\}$. Let f be an index such that

$$
f \cdot(e, x) \simeq \max \{U(k) \mid k \leq x \text { and } \exists w \leq x T(1, e, w, k)\}
$$

Then for $F(e)=S_{1}^{1}(f, e), \phi_{F(e)}$ is total (so $F(e) \in A_{1}$), and $F(e) \in A_{2}$ if and only if $\operatorname{rge}\left(\phi_{e}\right)$ is finite. Hence F reduces B to A, as desired.
In order to show that A is not in Σ_{2}, take a set B which is m-complete in Π_{2} and prove $B \leq_{m} A$. Here we can take $B=\left\{e \mid \phi_{e}\right.$ is total $\}$. Let f be such that

$$
f \cdot(e, x) \simeq\left\{\begin{aligned}
0 & \text { if } e \cdot x \text { is defined } \\
\text { undefined } & \text { otherwise }
\end{aligned}\right.
$$

Then for $F(e)=S_{1}^{1}(f, e), F(e)$ is always in A_{2}, and $F(e) \in A_{1}$ if and only if ϕ_{e} is total (which is, if $e \in B$). So again F reduces B to A.

Exercise 5:

We consider every function $F: \mathbb{N} \rightarrow \mathbb{N}$ as a directed graph with set of points \mathbb{N} : for $n, m \in \mathbb{N}$, we have an edge from n to m if and only if $F(j(n, m))=0$. In such a graph, a path from m to n is a sequence of edges, such that each edge starts where the previous one ends, and the first one starts at m and the last one ends at n. A graph is connected if for each n and m, there is either a path from m to n or a path from n to m.
a) (5) Show that the set $\{F \mid F$, considered as a graph, is connected $\}$ is a Π_{2}^{0}-subset of $\mathbb{N}^{\mathbb{N}}$
b) (5) Show that the set $\{F \mid$ there is no infinite path in $F\}$ is not arithmetical.

Solution: a) The given set consists of those F satisfying: for all m, n, either there is σ with $(\sigma)_{0}=m$ and $(\sigma)_{\operatorname{lh}(\sigma)-1}=n$ and $\forall i<\operatorname{lh}(\sigma)-$ $1 F\left(j\left((\sigma)_{i},(\sigma)_{i+1}\right)\right)=0$, or there is such a σ in the other direction (interchange the roles of m and n). So this is of the form $\forall n m \exists \sigma[\cdots]$ with $[\cdots]$ recursive. Hence the set is Π_{2}^{0}.
b) This should have reminded you of the set WfRec of indices of characteristic functions of recursive well-founded trees. There is a primitive recursive function F such that for all x,
$F(x) \cdot j(\sigma, \tau) \simeq\left\{\begin{aligned} 0 & \text { if } x \cdot \sigma=x \cdot \tau=0 \text { and } \\ & \operatorname{lh}(\tau)=\operatorname{lh}(\sigma)+1 \text { and } \forall i<\operatorname{lh}(\sigma)(\sigma)_{i}=(\tau)_{i} \\ 1 & \text { if } x \cdot \sigma \text { and } x \cdot \tau \text { are defined but the condition } \\ & \text { above does not hold } \\ \text { undefined } & \text { if } x \cdot \sigma \text { or } x \cdot \tau \text { is undefined }\end{aligned}\right.$
Then if ϕ_{x} is the characteristic function of a recursive tree, $\phi_{F(x)}$ is total, and $\phi_{F(x)}$, considered as a graph, has no infinite path precisely when ϕ_{x} is the characteristic function of a recursive well-founded tree. So if the set $A=$ $\{F \mid$ there is no infinite path in $F\}$ were arithmetical, then the set $\left\{x \mid \phi_{x} \in\right.$ $A\}$ would be an arithmetical subset of \mathbb{N}. However, it is m-complete in Π_{1}^{1} by Theorem 6.3.3 in the notes.

