Exam Gödel's Incompleteness Theorems

June 4, 2015, 10.00-13.00
With solutions

Exercise 1.

a) Let F be a primitive recursive function. Prove that the function

$$
x \mapsto \underbrace{F(F(\cdots F}_{F(x) \text { times }}(x)) \cdots)
$$

is primitive recursive too.
b) Let $\log (y, x)$ denote the largest number z such that $y^{z}<x$. Prove that $\log (y, x)$ is a primitive recursive function of two variables.

Solution: a). Define the function $G(x, y)$ by $G(x, 0)=x$ and $G(x, y+$ $1)=F(G(x, y))$. Then G is defined by primitive recursion from the identity function, projections and F, so G is primitive recursive. The given function is the function $x \mapsto G(x, F(x))$, defined from G by composition, so this function is primitive recursive.
b). The given function is not defined for $y<2$, so let's agree on a default value: put $\log (y, x)=0$ for $y<2$. Now for $y \geq 2, y^{z}>z$ for all z, so we see that $\log (y, x)<x$ in that case. So we can replace the search for a largest number by a bounded minimisation: for $y \geq 2$, put

$$
\log (y, x)=\left(\mu z \leq x \cdot y^{z} \geq x\right)-1
$$

Now $\log (y, x)$ is defined by case distinction on $y \geq 2$, bounded minimisation and the exponential function (which is primitive recursive), so it is primitive recursive.

Exercise 2. Recall that a function $f: \mathbb{N} \rightarrow \mathbb{N}$ is provably recursive if there is a Σ_{1}-formula $F(x, y)$ satisfying the following conditions:

$$
\begin{aligned}
& \text { PA } \vdash F(\bar{n}, \overline{f(n)}) \quad \text { for every natural number } n \\
& \text { PA } \vdash \forall x \exists!y F(x, y)
\end{aligned}
$$

Prove that the set of provably recursive functions is closed under composition.

Solution: the exercise only speaks of functions of one variable, so we can limit ourselves to that case. Let f and g be provably recursive functions, and F, G two Σ_{1}-formulas such that for all natural numbers $n, \mathrm{PA} \vdash F(\bar{n}, \overline{f(n)}) \wedge$ $G(\bar{n}, g(n))$, and moreover PA $\vdash \forall x \exists!y F(x, y)$ and $\mathrm{PA} \vdash \forall u \exists!v G(u, v)$. Let $H(x, v)$ be the formula

$$
\exists w(F(x, w) \wedge G(w, v))
$$

Then $H(x, v)$ is a Σ_{1}-formula (beware! If we had put $H(x, v) \equiv \exists!w(F(x, w) \wedge$ $G(w, v)$), then we had not obtained a Σ_{1}-formula!), since Σ_{1}-formulas are closed under conjunctions and existential quantifications. Moreover since we have PA $\vdash F(\bar{n}, \overline{f(n)}) \wedge G(\overline{f(n)}, \overline{g(f(n))})$, we see that $\mathrm{PA} \vdash H(\bar{n}, \overline{g(f(n))})$.

For the other property, reason inside PA (or, equivalently, in an arbitrary model of PA). Given x, there is y with $F(x, y)$; for such a y there is v with $G(y, v)$, so there is v with $H(x, v)$. So we see PA $\vdash \forall x \exists v H(x, v)$. For uniqueness, suppose $H(x, v) \wedge H\left(x, v^{\prime}\right)$. Then there are y and y^{\prime} with $F(x, y), F\left(x, y^{\prime}\right), G(y, v)$ and $G\left(y^{\prime}, v^{\prime}\right)$. But by the uniqueness satisfied by F and G, we see $y=y^{\prime}$ and hence $v=v^{\prime}$. So we have in fact PA $\vdash \forall x \exists!v H(x, v)$, as desired.
Exercise 3. Recall that the notation $\square \phi$ stands for $\exists x \overline{\operatorname{Prf}}(x, \overline{\ulcorner\phi\urcorner})$ and that forthe following three "derivability conditions" hold:

D1 PA $\vdash \phi$ implies PA $\vdash \square \phi$
D2 PA $\vdash \square(\phi \rightarrow \psi) \rightarrow(\square \phi \rightarrow \square \psi)$
D3 PA $\vdash \square \phi \rightarrow \square \square \phi$
You may use without proof, that conditions D1 and D2 imply
$\mathrm{PA} \vdash \square(\phi \wedge \psi) \leftrightarrow \square \phi \wedge \square \psi$.
a) Let PA^{\prime} be the theory $\mathrm{PA}+\square \chi$ for some sentence χ. Show that property D1 also holds for PA^{\prime} : if $\mathrm{PA}^{\prime} \vdash \phi$, then $\mathrm{PA}^{\prime} \vdash \square \phi$.
b) Prove Formalised Löb's Theorem, which is the statement

$$
\mathrm{PA} \vdash \square(\square \phi \rightarrow \phi) \rightarrow \square \phi
$$

for arbitrary ϕ.
[Hint: given ϕ, show that there is a sentence ψ such that PA $\vdash \psi \leftrightarrow$ $(\square \psi \rightarrow \phi)$. Let PA^{\prime} be PA $+\square(\square \phi \rightarrow \phi)$. Prove that $\mathrm{PA}^{\prime} \vdash \square \psi$ and conclude that $\mathrm{PA}^{\prime} \vdash \square \phi$.]

Solution: a). Suppose $\mathrm{PA}^{\prime} \vdash \phi$. Then $\mathrm{PA} \vdash \square \chi \rightarrow \phi$, so by D1 for PA, PA $\vdash \square(\square \chi \rightarrow \phi)$. Applying D2 we get PA $\vdash \square \square \chi \rightarrow \square \phi$. Using D3 on $\chi(\mathrm{PA} \vdash \square \chi \rightarrow \square \square \chi)$ we obtain $\mathrm{PA} \vdash \square \chi \rightarrow \square \phi$, which is equivalent to $\mathrm{PA}^{\prime} \vdash \square \phi$.
b). Apply the Diagonalisation Lemma to the formula $(\exists x \overline{\operatorname{Prf}}(x, v)) \rightarrow \phi$: we obtain a sentence ψ satisfying PA $\vdash \psi \leftrightarrow(\square \psi \rightarrow \phi)$. Let PA^{\prime} be the theory $\mathrm{PA}+\square(\square \phi \rightarrow \phi)$. We note that the properties D1,D2 and D3 hold true for PA^{\prime} as well (using part a) of the exercise). We now get:

By D2 and choice of ψ,	$\mathrm{PA}^{\prime} \vdash \square \psi \leftrightarrow \square(\square \psi \rightarrow \phi)$	(1)
By D3 on ψ,	$\mathrm{PA}^{\prime} \vdash \square \psi \rightarrow \square \square \psi$	(2)
By D2 and (1),	$\mathrm{PA}^{\prime} \vdash \square \psi \rightarrow(\square \square \psi \rightarrow \square \phi)$	(3)
By (2) and (3),	$\mathrm{PA}^{\prime} \vdash \square \psi \rightarrow \square \phi$	(4)
By (4) and D1,	$\mathrm{PA}^{\prime} \vdash \square(\square \psi \rightarrow \square \phi)$	(5)
By (5) and definition of PA^{\prime},	$\mathrm{PA}^{\prime} \vdash \square(\square \psi \rightarrow \phi)$	(6)
By (1),(6) and choice of ψ,	$\mathrm{PA}^{\prime} \vdash \square \psi$	(7)
By (4),	$\mathrm{PA}^{\prime} \vdash \square \phi$	

And the last line just means PA $\vdash \square(\square \phi \rightarrow \phi) \rightarrow \square \phi$.
Exercise 4. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a provably recursive function (see Exercise 2). We work in a conservative extension of PA which has a function symbol for f, and axiom $\forall x F(x, f(x))$, where $F(x, y)$ is the Σ_{1}-formula representing f. Note, that any model of PA has a unique interpretation of the function symbol f making the axiom true.

Now assume that f is strictly increasing. Let \mathcal{M} be a nonstandard model of PA; by \mathcal{N} we denote, as usual, the standard model. Furthermore, assume that \mathcal{N} is a Π_{1}-elementary submodel of \mathcal{M}.

Prove that the following two statements are equivalent:
i) In \mathcal{M} there exists a copy of \mathbb{Z} which contains no elements of the form $f(x)$
ii) $\quad \mathcal{N} \models \forall y \exists x(f(x+1)>f(x)+y)$

Solution. i) \Rightarrow ii): Suppose ii) fails, so $\mathcal{N} \not \vDash \forall y \exists x(f(x+1>f(x)+y)$. Then there is a standard number k such that

$$
\mathcal{N} \models \forall x(f(x+1) \leq f(x)+k)
$$

Now $\forall x(f(x+1) \leq f(x)+k)$ is a Π_{1}-sentence, so since the inclusion $\mathcal{N} \subset \mathcal{M}$ is supposed to be Π_{1}-elementary, we get

$$
\mathcal{M} \models \forall x(f(x+1) \leq f(x)+k)
$$

In order to see that i) fails, let $x \in \mathcal{M}$ be nonstandard. Because f is strictly increasing, $x \leq f(x)$ so there is a least y such that $x \leq f(y)$. Then y cannot be 0 , for $f(0)$ is a standard number. Now we have $f(y)-f(y-1) \leq k$ and $f(y-1)<x \leq f(y)$, so the element $f(y)$ lies in the same copy of \mathbb{Z} as x. The element $x \in \mathcal{M}$ was an arbitrary nonstandard number, so we see that i) fails.
ii) $\Rightarrow \mathrm{i}$): Suppose $\mathcal{N} \models \forall y \exists x(f(x+1)>f(x)+y)$. Then for all standard numbers m we have

$$
\mathcal{N} \models \exists x(f(x+1)>f(x)+m)
$$

and since this is a Σ_{1}-sentence (we don't need the assumption $\mathcal{N} \prec_{\Pi_{1}} \mathcal{M}$ here!) it holds in \mathcal{M} :

$$
\mathcal{M} \vDash \exists x(f(x+1)>f(x)+m)
$$

This holds for all standard m, so by Overspill there is a nonstandard element c satisfying $\mathcal{M} \vDash \exists x(f(x+1)>f(x)+c)$. Pick $a \in \mathcal{M}$ such that $f(a+1)>$ $f(a)+c$. We see then, that $f(a)$ and $f(a+1)$ lie in different copies of \mathbb{Z}. Since the ordering of these copies is dense, there is a copy of \mathbb{Z} in between. Now that copy cannot contain an element of the form $f(x)$, because f is strictly increasing.

