Exam Gödel's Incompleteness Theorems

June 4, 2015, 10.00–13.00 With solutions

Exercise 1.

a) Let F be a primitive recursive function. Prove that the function

$$x \mapsto \underbrace{F(F(\cdots F(x)))\cdots}_{F(x) \text{ times}}$$

is primitive recursive too.

b) Let $\log(y, x)$ denote the largest number z such that $y^z < x$. Prove that $\log(y, x)$ is a primitive recursive function of two variables.

Solution: a). Define the function G(x, y) by G(x, 0) = x and G(x, y + 1) = F(G(x, y)). Then G is defined by primitive recursion from the identity function, projections and F, so G is primitive recursive. The given function is the function $x \mapsto G(x, F(x))$, defined from G by composition, so this function is primitive recursive.

b). The given function is not defined for y < 2, so let's agree on a default value: put $\log(y, x) = 0$ for y < 2. Now for $y \ge 2$, $y^z > z$ for all z, so we see that $\log(y, x) < x$ in that case. So we can replace the search for a largest number by a bounded minimisation: for $y \ge 2$, put

$$\log(y, x) = (\mu z \le x \cdot y^z \ge x) - 1$$

Now $\log(y, x)$ is defined by case distinction on $y \ge 2$, bounded minimisation and the exponential function (which is primitive recursive), so it is primitive recursive.

Exercise 2. Recall that a function $f : \mathbb{N} \to \mathbb{N}$ is *provably recursive* if there is a Σ_1 -formula F(x, y) satisfying the following conditions:

$$PA \vdash F(\overline{n}, \overline{f(n)})$$
 for every natural number n
 $PA \vdash \forall x \exists ! y F(x, y)$

Prove that the set of provably recursive functions is closed under composition.

Solution: the exercise only speaks of functions of one variable, so we can limit ourselves to that case. Let f and g be provably recursive functions, and F, G two Σ_1 -formulas such that for all natural numbers n, $PA \vdash F(\overline{n}, \overline{f(n)}) \land$ $G(\overline{n}, \overline{g(n)})$, and moreover $PA \vdash \forall x \exists ! yF(x, y)$ and $PA \vdash \forall u \exists ! vG(u, v)$. Let H(x, v) be the formula

$$\exists w (F(x,w) \land G(w,v))$$

Then H(x, v) is a Σ_1 -formula (beware! If we had put $H(x, v) \equiv \exists! w(F(x, w) \land G(w, v))$, then we had *not* obtained a Σ_1 -formula!), since Σ_1 -formulas are closed under conjunctions and existential quantifications. Moreover since we have $\mathrm{PA} \vdash F(\overline{n}, \overline{f(n)}) \land G(\overline{f(n)}, \overline{g(f(n))})$, we see that $\mathrm{PA} \vdash H(\overline{n}, \overline{g(f(n))})$.

For the other property, reason inside PA (or, equivalently, in an arbitrary model of PA). Given x, there is y with F(x, y); for such a y there is v with G(y, v), so there is v with H(x, v). So we see PA $\vdash \forall x \exists v H(x, v)$. For uniqueness, suppose $H(x, v) \land H(x, v')$. Then there are y and y' with F(x, y), F(x, y'), G(y, v) and G(y', v'). But by the uniqueness satisfied by F and G, we see y = y' and hence v = v'. So we have in fact PA $\vdash \forall x \exists ! v H(x, v)$, as desired.

Exercise 3. Recall that the notation $\Box \phi$ stands for $\exists x \overline{\Prf}(x, \overline{\neg \phi})$ and that for \Box the following three "derivability conditions" hold:

- D1 $PA \vdash \phi$ implies $PA \vdash \Box \phi$
- D2 PA $\vdash \Box(\phi \rightarrow \psi) \rightarrow (\Box \phi \rightarrow \Box \psi)$
- D3 PA $\vdash \Box \phi \rightarrow \Box \Box \phi$

You may use without proof, that conditions D1 and D2 imply $PA \vdash \Box(\phi \land \psi) \leftrightarrow \Box\phi \land \Box\psi$.

- a) Let PA' be the theory $PA + \Box \chi$ for some sentence χ . Show that property D1 also holds for PA': if $PA' \vdash \phi$, then $PA' \vdash \Box \phi$.
- b) Prove Formalised Löb's Theorem, which is the statement

$$PA \vdash \Box(\Box \phi \rightarrow \phi) \rightarrow \Box \phi$$

for arbitrary ϕ .

[Hint: given ϕ , show that there is a sentence ψ such that $PA \vdash \psi \leftrightarrow (\Box \psi \rightarrow \phi)$. Let PA' be $PA + \Box (\Box \phi \rightarrow \phi)$. Prove that $PA' \vdash \Box \psi$ and conclude that $PA' \vdash \Box \phi$.]

Solution: a). Suppose $PA' \vdash \phi$. Then $PA \vdash \Box \chi \rightarrow \phi$, so by D1 for PA, $PA \vdash \Box(\Box\chi \rightarrow \phi)$. Applying D2 we get $PA \vdash \Box\Box\chi \rightarrow \Box\phi$. Using D3 on χ ($PA \vdash \Box\chi \rightarrow \Box\Box\chi$) we obtain $PA \vdash \Box\chi \rightarrow \Box\phi$, which is equivalent to $PA' \vdash \Box\phi$.

b). Apply the Diagonalisation Lemma to the formula $(\exists x \overline{\Prf}(x, v)) \to \phi$: we obtain a sentence ψ satisfying $PA \vdash \psi \leftrightarrow (\Box \psi \to \phi)$. Let PA' be the theory $PA + \Box(\Box \phi \to \phi)$. We note that the properties D1,D2 and D3 hold true for PA' as well (using part a) of the exercise). We now get:

By D2 and choice of ψ ,	$\mathrm{PA}' \vdash \Box \psi \leftrightarrow \Box (\Box \psi \to \phi)$	(1)
By D3 on ψ ,	$\mathrm{PA}' \vdash \Box \psi \to \Box \Box \psi$	(2)
By D2 and (1) ,	$\mathrm{PA}' \vdash \Box \psi \to (\Box \Box \psi \to \Box \phi)$	(3)
By (2) and (3) ,	$\mathrm{PA}' \vdash \Box \psi \to \Box \phi$	(4)
By (4) and D1,	$\mathrm{PA}' \vdash \Box (\Box \psi \to \Box \phi)$	(5)
By (5) and definition of PA',	$\mathrm{PA}' \vdash \Box (\Box \psi \to \phi)$	(6)
By (1),(6) and choice of ψ ,	$PA' \vdash \Box \psi$	(7)
By (4),	$PA' \vdash \Box \phi$	

And the last line just means $PA \vdash \Box(\Box \phi \rightarrow \phi) \rightarrow \Box \phi$.

Exercise 4. Let $f : \mathbb{N} \to \mathbb{N}$ be a provably recursive function (see Exercise 2). We work in a conservative extension of PA which has a function symbol for f, and axiom $\forall x F(x, f(x))$, where F(x, y) is the Σ_1 -formula representing f. Note, that any model of PA has a unique interpretation of the function symbol f making the axiom true.

Now assume that f is strictly increasing. Let \mathcal{M} be a nonstandard model of PA; by \mathcal{N} we denote, as usual, the standard model. Furthermore, assume that \mathcal{N} is a Π_1 -elementary submodel of \mathcal{M} .

Prove that the following two statements are equivalent:

- i) In \mathcal{M} there exists a copy of \mathbb{Z} which contains no elements of the form f(x)
- ii) $\mathcal{N} \models \forall y \exists x (f(x+1) > f(x) + y)$

Solution. i) \Rightarrow ii): Suppose ii) fails, so $\mathcal{N} \not\models \forall y \exists x (f(x+1 > f(x)+y))$. Then there is a standard number k such that

$$\mathcal{N} \models \forall x (f(x+1) \le f(x) + k)$$

Now $\forall x (f(x+1) \leq f(x)+k)$ is a Π_1 -sentence, so since the inclusion $\mathcal{N} \subset \mathcal{M}$ is supposed to be Π_1 -elementary, we get

$$\mathcal{M} \models \forall x (f(x+1) \le f(x) + k)$$

In order to see that i) fails, let $x \in \mathcal{M}$ be nonstandard. Because f is strictly increasing, $x \leq f(x)$ so there is a least y such that $x \leq f(y)$. Then y cannot be 0, for f(0) is a standard number. Now we have $f(y) - f(y-1) \leq k$ and $f(y-1) < x \leq f(y)$, so the element f(y) lies in the same copy of \mathbb{Z} as x. The element $x \in \mathcal{M}$ was an arbitrary nonstandard number, so we see that i) fails.

ii) \Rightarrow i): Suppose $\mathcal{N} \models \forall y \exists x (f(x+1) > f(x) + y)$. Then for all standard numbers *m* we have

$$\mathcal{N} \models \exists x (f(x+1) > f(x) + m)$$

and since this is a Σ_1 -sentence (we don't need the assumption $\mathcal{N} \prec_{\Pi_1} \mathcal{M}$ here!) it holds in \mathcal{M} :

$$\mathcal{M} \models \exists x (f(x+1) > f(x) + m)$$

This holds for all standard m, so by Overspill there is a nonstandard element c satisfying $\mathcal{M} \models \exists x (f(x+1) > f(x) + c)$. Pick $a \in \mathcal{M}$ such that f(a+1) > f(a) + c. We see then, that f(a) and f(a+1) lie in different copies of \mathbb{Z} . Since the ordering of these copies is dense, there is a copy of \mathbb{Z} in between. Now that copy cannot contain an element of the form f(x), because f is strictly increasing.