
Exam Gödel’s Incompleteness Theorems
May 26, 2010, 14.00–17.00

With solutions

THIS EXAM CONSISTS OF 4 PROBLEMS; SEE ALSO BACK SIDE

Advice: first do those problems you can do right away; then, start thinking

about the others. Good luck!

Exercise 1. Define a variant of the Fibonacci function:

F (0) = 1
F (1) = 2

F (n+ 2) = F (n) + F (n+ 1)

a) Compute F (n) for 0 ≤ n ≤ 5.

b) Prove that F is primitive recursive.

c) Show that there is a formula φ = φ(x, y) such that for all n ∈ IN

PA ⊢ φ(n, F (n)) PA ⊢ ¬φ(n, F (n+ 1)).

Can you write down such a φ?

Solution:

a)
n F (n)
0 1
1 2
2 3
3 5
4 8
5 13

b) Let 〈n,m〉 be a primitive recursive pairing function with primitive recur-
sive projections (〈n0, n1〉)i = ni, for 0 ≤ i ≤ 1. Define

G(n) = 〈F (n), F (n+ 1)〉.

Then

G(0) = 〈1, 2〉;

G(n+ 1) = 〈(G(n))1, (G(n))0 + (G(n))1〉 = H(G(n)).

Since H is primitive recursive, so is G. Finally

F (n) = (G(n))0

and therefore F is primitive recursive.
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c) Let F be represented numeralwise by φ. Then

F (n) = m ⇒ PA ⊢ φ(n,m) (1)

PA ⊢ ∀x∃!y.φ(x, y) (2)

By (1) it follows that PA ⊢ φ(n, F (n)). By induction one can prove
F (n) > 0, hence F (n) < F (n + 1). Therefore PA ⊢ F (n) 6= F (n+ 1).
Then PA ⊢ ¬φ(F (n), F (n+ 1)) by (2).
To give an explicit φ, define

φ(n,m) := ∃x [(x)0 = 1 ∧ (x)1 = 2 ∧
[∀k ≤ n.(x)k+2 = (x)k + (x)k+1]
∧ (x)n = m.]

Exercise 2.Define the set of terms Tx, with x = v0 as follows.

Tx := 0 | 1 | x | Tx + Tx | Tx · Tx

That is, Tx is the smallest set of terms such that

0 ∈ Tx

1 ∈ Tx

x ∈ Tx

t1, t2 ∈ Tx ⇒ (t1 + t2) ∈ Tx

t1, t2 ∈ Tx ⇒ (t1 · t2) ∈ Tx

Let T be the set of all terms of PA and let T0 be the set of closed terms of PA.

a) Show that there is a primitive recursive function g such that for all t ∈ T

g( t ) = 1, if t ∈ Tx,
g( t ) = 0, if t ∈ T − Tx.

[Hint. There are primitive recursive functions f+, f+
1 , f

+
2 , f

·, f ·
1, f

·
2,KT

such that n,m < f+(n,m), n,m < f ·(n,m) and

f+
i

( t1 + t2 ) = ti ;
f+( t1 , t2 ) = t1 + t2 ;
f ·

i
( t1 · t2 ) = ti ;

f ·( t1 , t2 ) = t1 · t2 ;
T+(n) = 1, if n = t1 + t2 , for some t1, t2 ∈ T ;

= 0, otherwise;
T ·(n) = 1, if n = t1 · t2 , for some t1, t2 ∈ T ;

= 0, otherwise.]

b) Show that there is a primitive recursive function E such that for all t ∈ Tx

and n ∈ IN
e( t , n) = (t[n/x])IN.
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For example e( (x.x) + 1 , 3) = 10. [Hint. Complete the following defini-
tion by cases.

e(m,n) = 0, if m = 0 ;
= . . . , if m = 1 ;
= . . . , if m = x ;
= . . . , if m = t1 + t2 (use e(f+

i
(m), n));

= . . . , if m = t1 · t2 ;
= 0, otherwise.

Give an argument why this is primitive recursive.]

c) Show that there is a formula ψ = ψ(m,n) such that for all t ∈ Tx and
n ∈ IN one has

PA ⊢ ψ( t , n)↔ (t[n/x] = 7). (0)

[Hint. Let e be numeralwise represented by E. Show that

ψ(m,n) := E(m,n, 7)

works. Show first that for all t ∈ T0

PA ⊢ tIN = t. (1)]

Solution.
a) Define by a course of value recursion the primitive recursive function

g(n) = 1, if n = 0 , n = 1 , or n = x ;
= g(f+

1 (n)) · g(f+
2 (n)), if T+(n) = 1;

= g(f ·
1(n)) · g(f ·

2(n)), if T ·(n) = 1;
= 0, otherwise.

Then one can show by course of value induction that for all t ∈ T

g( t ) = 1 ⇐⇒ t ∈ T ;

g( t ) = 0 ⇐⇒ t/∈T.

b) We can define e by course of value primitive recursion

e(m,n) = 0, if m = 0 ;
= 1, if m = 1 ;
= n, if m = x ;
= e(f+

1 (m)) + e(f+
2 (m)), if T+(m);

= e(f+
1 (m)) · e(f+

2 (m)), if T ·(m);
= 0, otherwise.

The use of T+, T · shows why E is primitive recursive.
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c) We have for all m,n

PA ⊢ E(m,n, e(m,n))
PA ⊢ ∃!z.E(m,n, z)

In particular taking m = t

PA ⊢ E( t , n, e( t , n)) (2.1)

PA ⊢ ∃!z.E( t , n, z) (2.2)

By (b) the following is provable in PA for all t ∈ T and n

E( t , n, e( t , n)) ↔ E( t , n, (t[n/x])IN)

↔ E( t , n, t[n/x]), by (1).

Therefore it follows by (2.1) that

PA ⊢ E( t , n, t[n/x]). (3)

Now we prove (0). As to →,

ψ( t , n ) → E( t , n, 7), by definition,

E( t , n, t[n/x]), by (3),
→ t[n/x] = 7, by (2.2).

As to (←),

t[n/x] = 7 → E( t , n, 7), by (3),

→ ψ( t , n ).

Exercise 3. Recall that the notation �φ stands for ∃xPrf(x, pφq) and that for
� the following three “derivability conditions” hold:

D1 PA ⊢ φ implies PA ⊢ �φ

D2 PA ⊢ �(φ→ ψ)→ (�φ→ �ψ)

D3 PA ⊢ �φ→ ��φ

Let G be the Gödel sentence, which satisfies PA ⊢ G ↔ ¬�G. By the Diago-
nalisation Lemma let H be a sentence such that

PA ⊢ H ↔ (G→ ¬�H)

a) Prove that PA ⊢ H ↔ (�H → �⊥)

b) Prove that PA ⊢ �¬H → H

c) Show that H is true in the standard model, but not provable in PA [Hint:
consider whether or not �H is true in the standard model].
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d) Show that G→ H is not provable in PA.

Solution: a) By Gödel’s Second Incompleteness Theorem we have PA ⊢ G ↔
¬�⊥; hence PA ⊢ H ↔ (¬�⊥ → ¬�H), from which the conclusion follows by
contraposition.

b) By Logic, PA ⊢ ¬H ↔ (H → ⊥). Using D2 and part a) we get

PA ⊢ �¬H ↔ �(H → ⊥)→ (�H → �⊥)↔ H

c) Suppose �H is true in the standard model. Then H is provable in PA
and hence true too. Also, ¬�H is false and therefore G→ ¬�H is false (since
G is true). But this last sentence is equivalent (in PA) to H ; contradiction.

So �H is false and H is not provable in PA. So ¬�H is true whence G →
¬�H is true, and therefore H is true.

d) We have the following equivalences in PA:

PA ⊢ (G→ H)↔ (G→ (G→ ¬�H))↔ (G→ ¬�H)↔ H

So if PA ⊢ G→ H then PA ⊢ H ; quod non, by the previous part.

Exercise 4. We consider a nonstandard model M of PA. Let F and G be two
primitive recursive functions, and φF (x, y), φG(x, y) formulas which represent
F and G respectively in PA. Let FM and GM be the functions onM such that
M |= φF (a, FM(a)) ∧ φG(a,GM(a)) for all a ∈M.

We say that F is eventually dominated by G (notation: F � G) if there
is a natural number n such that for every natural number m > n we have
F (m) ≤ G(m).

a) Show that there cannot exist an LPA-formula ψ(x, y1, . . . , yk) and elements
c1, . . . , ck ofM such that

N = {a ∈M|M |= ψ(a, c1, . . . , ck)}

b) Show that for every LPA-formula ψ(x, y1, . . . , yk) and every k-tuple c1, . . . , ck
of elements ofM the following two statements are equivalent:

i) For every standard element n there is a standard element m > n
such thatM |= ψ(m, c1, . . . , ck)

ii) For every nonstandard a ∈ M there is a nonstandard b < a in M
such thatM |= ψ(b, c1, . . . , ck)

c) Show that F � G holds precisely if there is a nonstandard element c ∈M
such that for every nonstandard d < c in M we have FM(d) ≤ GM(d).

Solution: a) Suppose such ψ and tuple ~c exist. Then M |= ψ(0,~c) and M |=
∀x(ψ(x,~c)→ ψ(x+ 1,~c)). BecauseM satisfies the induction axiom for ψ (with
arbitrary free variables!), it follows that M |= ∀xψ(x,~c). But this contradicts
the assumption, sinceM is nonstandard.
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Alternatively one might say: if ψ(n,~c) is true inM for all standard n, then
by Overspill there must be a nonstandard d ∈ M such that ψ(d,~c); contradicting
the assumption.

b) i) ⇒ ii): suppose i) and, for contradiction, that for some nonstandard c
we have that M |= ¬ψ(d,~c) for all nonstandard d < c. Then the formula

x < c ∧ ∃y(x < y < c ∧ ψ(y,~c))

defines the standard numbers, contradicting part a).
ii) ⇒ i): suppose ii) and, for contradiction, that for some standard n we

have thatM |= ¬ψ(m,~c) for all standard m > n. Then the formula

x ≤ n ∨ (x > n ∧ ∀y(n < y ≤ x→ ¬ψ(y,~c)))

defines the standard numbers, contradicting part a).
c) Let ψ(x) be the formula ∀yz(φF (x, y) ∧ φG(x, z) → y ≤ z). Then the

statement F 6� G is equivalent to: for every standard n there is a standard
m > n such that M |= ¬ψ(m). By part b), this is equivalent to: for every
nonstandard a there is a nonstandard b < a such thatM |= ¬ψ(b).

Hence F � G is equivalent to: there is a nonstandard c such that for all
nonstandard d < c, M |= ψ(d). That is: there is a nonstandard c such that for
every nonstandard d < c, FM(d) ≤ GM(d), as required.
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