Exam Godel’s Incompleteness Theorems
May 26, 2010, 14.00-17.00
With solutions

THIS EXAM CONSISTS OF 4 PROBLEMS; SEE ALSO BACK SIDE
Adpvice: first do those problems you can do right away; then, start thinking
about the others. Good luck!

Exercise 1. Define a variant of the Fibonacci function:

F(O) =1
F1) = 2
Fn+2) = Fn)+F(n+1)

a) Compute F(n) for 0 <n < 5.
b) Prove that F is primitive recursive.
¢) Show that there is a formula ¢ = ¢(x,y) such that for all n € IN

PA - ¢(m, F(n)) PAF —¢(m, F(n+ 1)).

Can you write down such a ¢7

Solution:
a)
0 1
1 2
2 3
3 5
4 8
5 13

b) Let (n,m) be a primitive recursive pairing function with primitive recur-
sive projections ((ng, n1)); = n;, for 0 < ¢ < 1. Define

G(n) = (F(n), F(n+1)).
Then

GO) = (1,2);
Gn+1) = ((Gn)h,(G(n)o + (G(n)1) = H(G(n)).

Since H is primitive recursive, so is G. Finally

and therefore F' is primitive recursive.



¢) Let F be represented numeralwise by ¢. Then

F(n)=m = PAF ¢(m,m) (1)

PA FVa3ly.o(z,y) (2)

By (1) it follows that PA + ¢(m, F'(n)). By induction one can prove
F(n) > 0, hence F(n) < F(n+1). Therefore PA - F(n) # F(n+1).

Then PA + —¢(F(n), F(n+ 1)) by (2).
To give an explicit ¢, define

¢(n,m) = Tz [(x)o

Exercise 2.Define the set of terms T, with x = vy as follows.
That is, T}, is the smallest set of terms such that

0eT,

1eT;

zely,
ti,to €Ty, = (t1+t2) €T,
ti,to €Ty, = (t1-t2) €Ty

Let T be the set of all terms of PA and let Ty be the set of closed terms of PA.
a) Show that there is a primitive recursive function g such that for all ¢t € T

g('th = 1, ifteT,,
g("th)y = 0, ifteT—T,.

[Hint. There are primitive recursive functions f*, f;, fo, £, fi, for KT
such that n,m < f*(n,m), n,m < f(n,m) and

[t +t) = t;
f+(t”752) = ti+ta;
filti-t2) = ti;
(Ft hl Ft2 ) — 71/.1 . tQ—‘;
tn) = 1, if n = "t; + 5, for some ty,ty € T}
= 0, otherwise;
T (n) = 1, if n ="t -ty , for some t{,t, € T}
= 0, otherwise.]

b) Show that there is a primitive recursive function E such that for all ¢t € T,

and n € IN
e("t,n) = (t[n/z])N



For example e( (z.z) + 1
tion by cases.

e(m,n) = 0,

,3) = 10. [Hint. Complete the following defini-

ifm= 0;
ifm= 1;
ifm= =z ;

ifm= t +tz (use e(f;'(m), n));

ifm= t1-t;

otherwise.

= O’

Give an argument why this is primitive recursive.]

¢) Show that there is a formula ¥ = ¥ (m,n) such that for all t € T, and
n € IN one has

PA+ o("t,m) — (ta/2] =7).

(0)

[Hint. Let e be numeralwise represented by F. Show that

Y(m,n

)= E(m,n,T7)

works. Show first that for all t € T}

Solution.

PA RN = ¢,

(D]

a) Define by a course of value recursion the primitive recursive function

g(n)

= 1,
9(fi' () - g(f3"(n)),
(f1(n)) - g(f3(n)),

)

g
=0

ifn=0,n=1,orn="a'
if T*(n) =1,

if T°(n) = 1;

otherwise.

Then one can show by course of value induction that for all t € T'

g('t") =
g("t")

l <= teT,
0 < t¢T.

b) We can define e by course of value primitive recursion

e(m,n) = 0,
= 1,
= e(ff (m))
= e(fif(m))-
= 0,

ifm="07",
ifm="17
ifm="a;
if TF(m);
if T"(m);
otherwise.

The use of T, T" shows why E is primitive recursive.



¢) We have for all m,n

PA+ E(m,m,e(m,n))
PA ‘3z, E(m, 7, z)

In particular taking m = ¢

PAF E(t',me( t,n)) (2.1)
PA 3. E(t, 7, 2) (2.2)

By (b) the following is provable in PA for all t € T and n

Therefore it follows by (2.1) that

PA+ E(t,7, t[a/x]). (3)
Now we prove (0). As to —,
o, ™) — E(E, n,7), by definition,
E( ‘7ﬁat[ﬁ/x])a by (3),
— t/x] =T, by (2.2).

As to («),

Exercise 3. Recall that the notation (¢ stands for 3zPrf(x,¢") and that for
O the following three “derivability conditions” hold:

D1 PA | ¢ implies PA F ¢
D2 PAFO(¢p — ¢) — (0o — Oy)
D3 PA+0O¢ — O0¢

Let G be the Godel sentence, which satisfies PA - G <« —JG. By the Diago-
nalisation Lemma let H be a sentence such that

PA+H < (G — -0OH)
a) Prove that PAFH « (OH — O1)
b) Prove that PA+O-H — H

c) Show that H is true in the standard model, but not provable in PA [Hint:
consider whether or not OH is true in the standard model].



d) Show that G — H is not provable in PA.

Solution: a) By Godel’s Second Incompleteness Theorem we have PA F G <
—=[.L; hence PA + H « (=01 — —OH), from which the conclusion follows by
contraposition.

b) By Logic, PA+ —-H < (H — ). Using D2 and part a) we get

PAFO-H<~OH—>1)— (OH—-0OL)«~ H

¢) Suppose LH is true in the standard model. Then H is provable in PA
and hence true too. Also, -0JH is false and therefore G — —H is false (since
G is true). But this last sentence is equivalent (in PA) to H; contradiction.

So OH is false and H is not provable in PA. So —JH is true whence G —
—[JH is true, and therefore H is true.

d) We have the following equivalences in PA:

PAF(G—H)~ (G—(G—-0H))~ (G—-0H)—H

So if PA+ G — H then PA + H; quod non, by the previous part.

Exercise 4. We consider a nonstandard model M of PA. Let F' and G be two
primitive recursive functions, and ¢p(z,y), ¢c(x,y) formulas which represent
F and G respectively in PA. Let F™ and G™ be the functions on M such that
M = ¢r(a, FM(a)) A pg(a, GM(a)) for all a € M.

We say that F is eventually dominated by G (notation: F < @) if there
is a natural number n such that for every natural number m > n we have

F(m) < G(m).

a) Show that there cannot exist an Lpa-formula ¢(z, y1, . . ., yx) and elements
€1y ..., ¢ of M such that

N = {ac M|MEY(a,ci,...,c1)}

b) Show that for every Lpa-formula ¢ (z,y1, ..., yx) and every k-tuple ¢1, . .., ¢k
of elements of M the following two statements are equivalent:

i) For every standard element n there is a standard element m > n
such that M E ¥(m,c1,...,ck)

ii) For every nonstandard a € M there is a nonstandard b < a in M
such that M = (b, c1, ..., ck)

¢) Show that F' =< G holds precisely if there is a nonstandard element ¢ € M
such that for every nonstandard d < ¢ in M we have FM(d) < GM(d).

Solution: a) Suppose such ¥ and tuple ¢ exist. Then M = ¢(0,¢) and M =
V(¢ (z,é) — Y(x+1,7)). Because M satisfies the induction axiom for ¢ (with
arbitrary free variables!), it follows that M = Vzi(z, é). But this contradicts
the assumption, since M is nonstandard.



Alternatively one might say: if ¥ (n, €) is true in M for all standard n, then
by Overspill there must be a nonstandard d € M such that 1(d, ¢); contradicting
the assumption.

b) i) = ii): suppose i) and, for contradiction, that for some nonstandard ¢
we have that M = —(d, ¢) for all nonstandard d < ¢. Then the formula

r<cAJyle <y <cAy(y,7o))

defines the standard numbers, contradicting part a).
ii) = i): suppose ii) and, for contradiction, that for some standard n we
have that M = —p(m, €) for all standard m > n. Then the formula

r<nV(xz>nAVyn<y<z— (y,0))

defines the standard numbers, contradicting part a).

¢) Let ¢(x) be the formula Yyz(¢r(z,y) A dg(z,z) — y < z). Then the
statement F' A G is equivalent to: for every standard n there is a standard
m > n such that M = —(m). By part b), this is equivalent to: for every
nonstandard a there is a nonstandard b < a such that M = —)(b).

Hence F' < G is equivalent to: there is a nonstandard ¢ such that for all
nonstandard d < ¢, M = 4(d). That is: there is a nonstandard ¢ such that for
every nonstandard d < ¢, FM(d) < GM(d), as required.



