Exam Gödel's Incompleteness Theorems

May 26, 2010, 14.00–17.00

With solutions

THIS EXAM CONSISTS OF 4 PROBLEMS; SEE ALSO BACK SIDE Advice: first do those problems you can do right away; then, start thinking about the others. Good luck!

Exercise 1. Define a variant of the Fibonacci function:

$$\begin{array}{rcl}
F(0) &=& 1 \\
F(1) &=& 2 \\
F(n+2) &=& F(n) + F(n+1)
\end{array}$$

- a) Compute F(n) for $0 \le n \le 5$.
- b) Prove that F is primitive recursive.
- c) Show that there is a formula $\phi = \phi(x, y)$ such that for all $n \in \mathbb{N}$

$$\mathrm{PA} \vdash \phi(\overline{n}, \overline{F(n)}) \quad \mathrm{PA} \vdash \neg \phi(\overline{n}, \overline{F(n+1)}).$$

Can you write down such a ϕ ?

Solution:

a)

n	F(n)
0	1
1	2
$\frac{2}{3}$	3
3	5
4	8
5	13

b) Let $\langle n, m \rangle$ be a primitive recursive pairing function with primitive recursive projections $(\langle n_0, n_1 \rangle)_i = n_i$, for $0 \le i \le 1$. Define

$$G(n) = \langle F(n), F(n+1) \rangle.$$

Then

$$G(0) = \langle 1, 2 \rangle; G(n+1) = \langle (G(n))_1, (G(n))_0 + (G(n))_1 \rangle = H(G(n)).$$

Since H is primitive recursive, so is G. Finally

$$F(n) = (G(n))_0$$

and therefore F is primitive recursive.

c) Let F be represented numeralwise by ϕ . Then

$$F(n) = m \quad \Rightarrow \quad \mathrm{PA} \vdash \phi(\overline{n}, \overline{m}) \tag{1}$$

$$\mathbf{PA} \vdash \forall x \exists ! y. \phi(x, y) \tag{2}$$

By (1) it follows that $PA \vdash \phi(\overline{n}, \overline{F(n)})$. By induction one can prove F(n) > 0, hence F(n) < F(n+1). Therefore $PA \vdash \overline{F(n)} \neq \overline{F(n+1)}$. Then $PA \vdash \neg \phi(\overline{F(n)}, \overline{F(n+1)})$ by (2). To give an explicit ϕ , define

$$\begin{array}{lll} \phi(n,m) &:= & \exists x & [(x)_0 = 1 \ \land \ (x)_1 = 2 \ \land \\ & [\forall k \le n.(x)_{k+2} = (x)_k + (x)_{k+1}] \\ & \land \ (x)_n = m.] \end{array}$$

Exercise 2.Define the set of terms T_x , with $x = v_0$ as follows.

$$T_x := 0 \mid 1 \mid x \mid T_x + T_x \mid T_x \cdot T_x$$

That is, T_x is the smallest set of terms such that

$$\begin{array}{ccc} 0 \in T_x \\ 1 \in T_x \\ x \in T_x \\ t_1, t_2 \in T_x & \Rightarrow & (t_1 + t_2) \in T_x \\ t_1, t_2 \in T_x & \Rightarrow & (t_1 \cdot t_2) \in T_x \end{array}$$

Let T be the set of all terms of PA and let T_0 be the set of closed terms of PA.

a) Show that there is a primitive recursive function g such that for all $t \in T$

$$\begin{array}{rcl} g(\ulcornert\urcorner) &=& 1, & \text{if } t \in T_x, \\ g(\ulcornert\urcorner) &=& 0, & \text{if } t \in T - T_x \end{array}$$

[Hint. There are primitive recursive functions $f^+, f_1^+, f_2^+, f^{\cdot}, f_1^{\cdot}, f_2^{\cdot}, K_T$ such that $n, m < f^+(n, m), n, m < f^{\cdot}(n, m)$ and

b) Show that there is a primitive recursive function E such that for all $t \in T_x$ and $n \in \mathbb{N}$

$$e(\lceil t \rceil, n) = (t[\overline{n}/x])^{t} \mathbb{N}.$$

For example $e(\lceil (x.x) + 1 \rceil, 3) = 10$. [Hint. Complete the following definition by cases.

$$e(m,n) = 0, \quad \text{if } m = \lceil 0 \rceil; \\ = \dots, \quad \text{if } m = \lceil 1 \rceil; \\ = \dots, \quad \text{if } m = \lceil x \rceil; \\ = \dots, \quad \text{if } m = \lceil t_1 + t_2 \rceil \text{ (use } e(f_i^+(m), n)); \\ = \dots, \quad \text{if } m = \lceil t_1 \cdot t_2 \rceil; \\ = 0, \quad \text{otherwise.}$$

Give an argument why this is primitive recursive.]

c) Show that there is a formula $\psi = \psi(m, n)$ such that for all $t \in T_x$ and $n \in \mathbb{N}$ one has

$$\mathrm{PA} \vdash \psi(\lceil t \rceil, \overline{n}) \leftrightarrow (t[\overline{n}/x] = \overline{7}). \tag{0}$$

[Hint. Let e be numeralwise represented by E. Show that

$$\psi(m,n) := E(m,n,\overline{7})$$

works. Show first that for all $t \in T_0$

$$\mathbf{PA} \vdash \overline{t^{\mathbb{N}}} = t. \tag{1}$$

Solution.

a) Define by a course of value recursion the primitive recursive function

$$\begin{array}{rcl} g(n) & = & 1, & \text{if } n = \lceil 0 \rceil, \, n = \lceil 1 \rceil, \, \text{or } n = \lceil x \rceil; \\ & = & g(f_1^+(n)) \cdot g(f_2^+(n)), & \text{if } T^+(n) = 1; \\ & = & g(f_1(n)) \cdot g(f_2(n)), & \text{if } T^{-}(n) = 1; \\ & = & 0, & \text{otherwise.} \end{array}$$

Then one can show by course of value induction that for all $t \in T$

$$g(\lceil t\rceil) = 1 \iff t \in T;$$

$$g(\lceil t\rceil) = 0 \iff t \notin T.$$

b) We can define e by course of value primitive recursion

$$\begin{array}{rcl} e(m,n) & = & 0, & \text{if } m = \lceil 0 \rceil; \\ & = & 1, & \text{if } m = \lceil 1 \rceil; \\ & = & n, & \text{if } m = \lceil x \rceil; \\ & = & e(f_1^+(m)) + e(f_2^+(m)), & \text{if } T^+(m); \\ & = & e(f_1^+(m)) \cdot e(f_2^+(m)), & \text{if } T^\cdot(m); \\ & = & 0, & \text{otherwise.} \end{array}$$

The use of T^+, T^{\cdot} shows why E is primitive recursive.

c) We have for all m, n

$$\begin{array}{l} \mathbf{PA} \vdash E(\overline{m},\overline{n},\overline{e(m,n)}) \\ \mathbf{PA} \vdash \exists ! z. E(\overline{m},\overline{n},z) \end{array}$$

In particular taking $m = \overline{t}$

$$PA \vdash E(\overline{[t]}, \overline{n}, \overline{e([t]}, n))$$

$$PA \vdash \exists ! z. E(\overline{[t]}, \overline{n}, z)$$

$$(2.1)$$

$$(2.2)$$

By (b) the following is provable in PA for all $t \in T$ and n

$$E(\overline{[t]}, \overline{n}, \overline{e([t], n)}) \quad \leftrightarrow \quad E(\overline{[t]}, \overline{n}, \overline{(t[\overline{n}/x])}\mathbb{N}) \\
 \leftrightarrow \quad E(\overline{[t]}, \overline{n}, t[\overline{n}/x]), \qquad \text{by (1)}.$$

Therefore it follows by (2.1) that

$$\mathrm{PA} \vdash E(\overline{[t]}, \overline{n}, t[\overline{n}/x]). \tag{3}$$

Now we prove (0). As to \rightarrow ,

$$\begin{array}{rcl} \psi(\overline{{}^{}t\overline{{}^{}}},{}^{}\overline{{}^{}}n\overline{{}^{}}) & \to & E(\overline{{}^{}t\overline{{}^{}}},\overline{n},\overline{7}), & \text{by definition}, \\ & & E(\overline{{}^{}t\overline{{}^{}}},\overline{n},t[\overline{n}/x]), & \text{by (3)}, \\ & \to & t[\overline{n}/x] = \overline{7}, & \text{by (2.2)}. \end{array}$$

As to (\leftarrow) ,

$$\begin{split} t[\overline{n}/x] &= \overline{7} \quad \rightarrow \quad E(\overline{\lceil t\rceil}, \overline{n}, \overline{7}), \quad \text{by (3)}, \\ & \rightarrow \quad \psi(\overline{\lceil t\rceil}, \lceil n\rceil). \end{split}$$

Exercise 3. Recall that the notation $\Box \phi$ stands for $\exists x \Pr(x, \neg \phi \neg)$ and that for \Box the following three "derivability conditions" hold:

- D1 PA $\vdash \phi$ implies PA $\vdash \Box \phi$
- D2 PA $\vdash \Box(\phi \rightarrow \psi) \rightarrow (\Box \phi \rightarrow \Box \psi)$
- D3 $PA \vdash \Box \phi \rightarrow \Box \Box \phi$

Let G be the Gödel sentence, which satisfies $PA \vdash G \leftrightarrow \neg \Box G$. By the Diagonalisation Lemma let H be a sentence such that

$$\mathrm{PA} \vdash H \leftrightarrow (G \rightarrow \neg \Box H)$$

- a) Prove that $PA \vdash H \leftrightarrow (\Box H \rightarrow \Box \bot)$
- b) Prove that $PA \vdash \Box \neg H \rightarrow H$
- c) Show that H is true in the standard model, but not provable in PA [Hint: consider whether or not $\Box H$ is true in the standard model].

d) Show that $G \to H$ is not provable in PA.

Solution: a) By Gödel's Second Incompleteness Theorem we have $PA \vdash G \leftrightarrow \neg \Box \bot$; hence $PA \vdash H \leftrightarrow (\neg \Box \bot \rightarrow \neg \Box H)$, from which the conclusion follows by contraposition.

b) By Logic, $PA \vdash \neg H \leftrightarrow (H \to \bot)$. Using D2 and part a) we get

$$\mathrm{PA} \vdash \Box \neg H \leftrightarrow \Box (H \rightarrow \bot) \rightarrow (\Box H \rightarrow \Box \bot) \leftrightarrow H$$

c) Suppose $\Box H$ is true in the standard model. Then H is provable in PA and hence true too. Also, $\neg \Box H$ is false and therefore $G \rightarrow \neg \Box H$ is false (since G is true). But this last sentence is equivalent (in PA) to H; contradiction.

So $\Box H$ is false and H is not provable in PA. So $\neg \Box H$ is true whence $G \rightarrow \neg \Box H$ is true, and therefore H is true.

d) We have the following equivalences in PA:

$$\mathsf{PA} \vdash (G \to H) \leftrightarrow (G \to (G \to \neg \Box H)) \leftrightarrow (G \to \neg \Box H) \leftrightarrow H$$

So if $PA \vdash G \rightarrow H$ then $PA \vdash H$; quod non, by the previous part.

Exercise 4. We consider a nonstandard model \mathcal{M} of PA. Let F and G be two primitive recursive functions, and $\phi_F(x, y)$, $\phi_G(x, y)$ formulas which represent F and G respectively in PA. Let $F^{\mathcal{M}}$ and $G^{\mathcal{M}}$ be the functions on \mathcal{M} such that $\mathcal{M} \models \phi_F(a, F^{\mathcal{M}}(a)) \land \phi_G(a, G^{\mathcal{M}}(a))$ for all $a \in \mathcal{M}$.

We say that F is eventually dominated by G (notation: $F \leq G$) if there is a natural number n such that for every natural number m > n we have $F(m) \leq G(m)$.

a) Show that there cannot exist an L_{PA} -formula $\psi(x, y_1, \ldots, y_k)$ and elements c_1, \ldots, c_k of \mathcal{M} such that

$$\mathbb{N} = \{a \in \mathcal{M} \mid \mathcal{M} \models \psi(a, c_1, \dots, c_k)\}$$

- b) Show that for every L_{PA} -formula $\psi(x, y_1, \dots, y_k)$ and every k-tuple c_1, \dots, c_k of elements of \mathcal{M} the following two statements are equivalent:
 - i) For every standard element n there is a standard element m > n such that $\mathcal{M} \models \psi(m, c_1, \dots, c_k)$
 - ii) For every nonstandard $a \in \mathcal{M}$ there is a nonstandard b < a in \mathcal{M} such that $\mathcal{M} \models \psi(b, c_1, \dots, c_k)$
- c) Show that $F \leq G$ holds precisely if there is a nonstandard element $c \in \mathcal{M}$ such that for every nonstandard d < c in \mathcal{M} we have $F^{\mathcal{M}}(d) \leq G^{\mathcal{M}}(d)$.

Solution: a) Suppose such ψ and tuple \vec{c} exist. Then $\mathcal{M} \models \psi(0, \vec{c})$ and $\mathcal{M} \models \forall x(\psi(x, \vec{c}) \rightarrow \psi(x+1, \vec{c}))$. Because \mathcal{M} satisfies the induction axiom for ψ (with arbitrary free variables!), it follows that $\mathcal{M} \models \forall x \psi(x, \vec{c})$. But this contradicts the assumption, since \mathcal{M} is nonstandard.

Alternatively one might say: if $\psi(n, \vec{c})$ is true in \mathcal{M} for all standard n, then by Overspill there must be a nonstandard $d \in \mathcal{M}$ such that $\psi(d, \vec{c})$; contradicting the assumption.

b) i) \Rightarrow ii): suppose i) and, for contradiction, that for some nonstandard c we have that $\mathcal{M} \models \neg \psi(d, \vec{c})$ for all nonstandard d < c. Then the formula

$$x < c \land \exists y (x < y < c \land \psi(y, \vec{c}))$$

defines the standard numbers, contradicting part a).

ii) \Rightarrow i): suppose ii) and, for contradiction, that for some standard n we have that $\mathcal{M} \models \neg \psi(m, \vec{c})$ for all standard m > n. Then the formula

$$x \le n \lor (x > n \land \forall y (n < y \le x \to \neg \psi(y, \vec{c})))$$

defines the standard numbers, contradicting part a).

c) Let $\psi(x)$ be the formula $\forall yz(\phi_F(x,y) \land \phi_G(x,z) \to y \leq z)$. Then the statement $F \not\leq G$ is equivalent to: for every standard *n* there is a standard m > n such that $\mathcal{M} \models \neg \psi(m)$. By part b), this is equivalent to: for every nonstandard *a* there is a nonstandard b < a such that $\mathcal{M} \models \neg \psi(b)$.

Hence $F \leq G$ is equivalent to: there is a nonstandard c such that for all nonstandard d < c, $\mathcal{M} \models \psi(d)$. That is: there is a nonstandard c such that for every nonstandard d < c, $F^{\mathcal{M}}(d) \leq G^{\mathcal{M}}(d)$, as required.