Exam Gödel's Incompleteness Theorems

May 26, 2010, 14.00-17.00

With solutions
THIS EXAM CONSISTS OF 4 PROBLEMS; SEE ALSO BACK SIDE
Advice: first do those problems you can do right away; then, start thinking about the others. Good luck!

Exercise 1. Define a variant of the Fibonacci function:

$$
\begin{aligned}
F(0) & =1 \\
F(1) & =2 \\
F(n+2) & =F(n)+F(n+1)
\end{aligned}
$$

a) Compute $F(n)$ for $0 \leq n \leq 5$.
b) Prove that F is primitive recursive.
c) Show that there is a formula $\phi=\phi(x, y)$ such that for all $n \in \mathbb{N}$

$$
\mathrm{PA} \vdash \phi(\bar{n}, \overline{F(n)}) \quad \mathrm{PA} \vdash \neg \phi(\bar{n}, \overline{F(n+1)}) .
$$

Can you write down such a ϕ ?

Solution:

a)

n	$F(n)$
0	1
1	2
2	3
3	5
4	8
5	13

b) Let $\langle n, m\rangle$ be a primitive recursive pairing function with primitive recursive projections $\left(\left\langle n_{0}, n_{1}\right\rangle\right)_{i}=n_{i}$, for $0 \leq i \leq 1$. Define

$$
G(n)=\langle F(n), F(n+1)\rangle .
$$

Then

$$
\begin{aligned}
G(0) & =\langle 1,2\rangle ; \\
G(n+1) & =\left\langle(G(n))_{1},(G(n))_{0}+(G(n))_{1}\right\rangle=H(G(n)) .
\end{aligned}
$$

Since H is primitive recursive, so is G. Finally

$$
F(n)=(G(n))_{0}
$$

and therefore F is primitive recursive.
c) Let F be represented numeralwise by ϕ. Then

$$
\begin{align*}
F(n)=m \Rightarrow & \mathrm{PA} \vdash \phi(\bar{n}, \bar{m}) \tag{1}\\
& \operatorname{PA} \vdash \forall x \exists!y \cdot \phi(x, y) \tag{2}
\end{align*}
$$

By (1) it follows that $\mathrm{PA} \vdash \phi(\bar{n}, \overline{F(n)})$. By induction one can prove $F(n)>0$, hence $F(n)<F(n+1)$. Therefore PA $\vdash \overline{F(n)} \neq \overline{F(n+1)}$. Then PA $\vdash \neg \phi(\overline{F(n)}, \overline{F(n+1)})$ by (2).
To give an explicit ϕ, define

$$
\begin{aligned}
\phi(n, m):=\exists x & {\left[(x)_{0}=1 \wedge(x)_{1}=2 \wedge\right.} \\
& {\left[\forall k \leq n \cdot(x)_{k+2}=(x)_{k}+(x)_{k+1}\right] } \\
& \left.\wedge(x)_{n}=m .\right]
\end{aligned}
$$

Exercise 2.Define the set of terms T_{x}, with $x=v_{0}$ as follows.

$$
T_{x}:=0|1| x\left|T_{x}+T_{x}\right| T_{x} \cdot T_{x}
$$

That is, T_{x} is the smallest set of terms such that

$$
\begin{array}{ll}
& 0 \in T_{x} \\
& 1 \in T_{x} \\
& x \in T_{x} \\
t_{1}, t_{2} \in T_{x} \Rightarrow & \left(t_{1}+t_{2}\right) \in T_{x} \\
t_{1}, t_{2} \in T_{x} \Rightarrow & \left(t_{1} \cdot t_{2}\right) \in T_{x}
\end{array}
$$

Let T be the set of all terms of PA and let T_{0} be the set of closed terms of PA.
a) Show that there is a primitive recursive function g such that for all $t \in T$

$$
\begin{aligned}
& g(\ulcorner t\urcorner)=1, \quad \text { if } t \in T_{x}, \\
& g(\ulcorner t\urcorner)=0, \quad \text { if } t \in T-T_{x} .
\end{aligned}
$$

[Hint. There are primitive recursive functions $f^{+}, f_{1}^{+}, f_{2}^{+}, f^{\cdot}, f_{1}, f_{2}, K_{T}$ such that $n, m<f^{+}(n, m), n, m<f^{\cdot}(n, m)$ and

$$
\begin{aligned}
f_{i}^{+}\left(\left\ulcorner t_{1}+t_{2}{ }^{\urcorner}\right)\right. & & =\left\ulcorner t_{i}\right\urcorner ; & \\
f^{+}\left(\left\ulcorner t_{1}\right\urcorner,\left\ulcorner t_{2}\right\urcorner\right) & \left.=t_{1}+t_{2}\right\urcorner ; & & \\
f_{i}\left(\left\ulcorner t_{1} \cdot t_{2}\right\urcorner\right) & =\left\ulcorner t_{i}\right\urcorner^{\urcorner} ; & & \\
f^{\prime}\left(\left\ulcorner t_{1}\right\urcorner,\left\ulcorner t_{2}\right\urcorner\right) & \left.=t_{1} \cdot t_{2}\right\urcorner ; & & \\
T^{+}(n) & =1, & & \text { if } n=\left\ulcorner t_{1}+t_{2}\right\urcorner, \text { for some } t_{1}, t_{2} \in T ; \\
& =0, & & \text { otherwise } ; \\
T \cdot(n) & =1, & & \text { if } n=\left\ulcorner t_{1} \cdot t_{2}\right\urcorner, \text { for some } t_{1}, t_{2} \in T ; \\
& =0, & & \text { otherwise. }]
\end{aligned}
$$

b) Show that there is a primitive recursive function E such that for all $t \in T_{x}$ and $n \in \mathbb{N}$

$$
e\left({ }^{\ulcorner } t^{\prime}, n\right)=(t[\bar{n} / x])^{\mathrm{I}} \mathrm{~N} .
$$

For example $e(\ulcorner(x . x)+1\urcorner, 3)=10$. [Hint. Complete the following definition by cases.

$$
\begin{aligned}
e(m, n) & =0, \quad \text { if } m=\ulcorner 0\urcorner ; \\
& =\ldots, \quad \text { if } m=\ulcorner 1\urcorner ; \\
& =\ldots, \quad \text { if } m=\left\ulcorner_{x} 7\right. \\
& \left.=\ldots, \quad \text { if } m={ }_{t} t_{1}+t_{2}\right\urcorner\left(\text { use } e\left(f_{i}^{+}(m), n\right)\right) ; \\
& \left.=\ldots, \quad \text { if } m={ }_{t} t_{1} \cdot t_{2}\right\urcorner ; \\
& =0, \quad
\end{aligned}
$$

Give an argument why this is primitive recursive.]
c) Show that there is a formula $\psi=\psi(m, n)$ such that for all $t \in T_{x}$ and $n \in \mathbb{N}$ one has

$$
\begin{equation*}
\mathrm{PA} \vdash \psi\left(\overline{\Gamma^{\top}}, \bar{n}\right) \leftrightarrow(t[\bar{n} / x]=\overline{7}) . \tag{0}
\end{equation*}
$$

[Hint. Let e be numeralwise represented by E. Show that

$$
\psi(m, n):=E(m, n, \overline{7})
$$

works. Show first that for all $t \in T_{0}$

$$
\begin{equation*}
\mathrm{PA} \vdash \overline{t^{\mathbb{N}}}=t \tag{1}
\end{equation*}
$$

Solution.

a) Define by a course of value recursion the primitive recursive function

$$
\begin{aligned}
g(n) & =1, & & \text { if } n=\left\ulcorner_{0} 0^{\prime}, n=\ulcorner 1\urcorner, \text { or } n=\ulcorner x\urcorner ;\right. \\
& =g\left(f_{1}^{+}(n)\right) \cdot g\left(f_{2}^{+}(n)\right), & & \text { if } T^{+}(n)=1 ; \\
& =g\left(f_{1}(n)\right) \cdot g\left(f_{2}^{2}(n)\right), & & \text { if } T^{\cdot}(n)=1 ; \\
& =0, & & \text { otherwise. }
\end{aligned}
$$

Then one can show by course of value induction that for all $t \in T$

$$
\begin{aligned}
& g\left(\ulcorner t\urcorner^{\top}\right)=1 \Longleftrightarrow t \in T ; \\
& g\left(\left\ulcorner\tau^{\urcorner}\right)=0 \Longleftrightarrow t \notin T .\right.
\end{aligned}
$$

b) We can define e by course of value primitive recursion

$$
\begin{aligned}
e(m, n) & =0, & & \text { if } m=\ulcorner 0\urcorner \\
& =1, & & \text { if } m=\ulcorner \urcorner ; \\
& =n, & & \text { if } m=\ulcorner x\rceil \\
& =e\left(f_{1}^{+}(m)\right)+e\left(f_{2}^{+}(m)\right), & & \text { if } T^{+}(m) ; \\
& =e\left(f_{1}^{+}(m)\right) \cdot e\left(f_{2}^{+}(m)\right), & & \text { if } T(m) ; \\
& =0, & & \text { otherwise. }
\end{aligned}
$$

The use of T^{+}, T^{*} shows why E is primitive recursive.
c) We have for all m, n

$$
\begin{aligned}
& \mathrm{PA} \vdash E(\bar{m}, \bar{n}, \overline{e(m, n)}) \\
& \mathrm{PA} \vdash \exists!z . E(\bar{m}, \bar{n}, z)
\end{aligned}
$$

In particular taking $m=\bar{t}$

$$
\begin{align*}
& \mathrm{PA} \vdash E\left(\overline{\Gamma^{\top}}, \bar{n}, \overline{\left.e\left(\Gamma^{\ulcorner }\right\urcorner^{\urcorner}, n\right)}\right) \tag{2.1}\\
& \mathrm{PA} \vdash \exists!z \cdot E\left(\overline{\Gamma^{\urcorner}}, \bar{n}, z\right) \tag{2.2}
\end{align*}
$$

By (b) the following is provable in PA for all $t \in T$ and n

$$
\begin{aligned}
& E\left(\overline{\Gamma^{\top}}, \bar{n}, \overline{e\left(\overline{\Gamma^{\top}}, n\right)}\right) \quad \leftrightarrow \quad E\left(\overline{\left.\Gamma^{\top}\right\urcorner}, \bar{n}, \overline{(t[\bar{n} / x]) \mathrm{N}}\right) \\
& \leftrightarrow E\left(\overline{\Gamma^{t}}, \bar{n}, t[\bar{n} / x]\right), \quad \text { by (1). }
\end{aligned}
$$

Therefore it follows by (2.1) that

$$
\begin{equation*}
\mathrm{PA} \vdash E\left(\overline{\Gamma_{t}}, \bar{n}, t[\bar{n} / x]\right) \tag{3}
\end{equation*}
$$

Now we prove (0). As to \rightarrow,

$$
\begin{aligned}
\psi\left(\overline{\left.\Gamma_{t}\right\urcorner},\ulcorner n\urcorner\right) & \rightarrow E\left(\overline{\overline{\ulcorner }{ }^{\top}}, \bar{n}, \overline{7}\right), & & \text { by definition, } \\
& E\left(\overline{\left.\Gamma^{\prime}\right\urcorner}, \bar{n}, t[\bar{n} / x]\right), & & \text { by }(3), \\
\rightarrow & t[\bar{n} / x]=\overline{7}, & & \text { by }(2.2) .
\end{aligned}
$$

As to (\leftarrow),

$$
\begin{aligned}
t[\bar{n} / x]=\overline{7} & \rightarrow E\left(\overline{\Gamma^{\top}}, \bar{n}, \overline{7}\right), \quad \text { by }(3), \\
& \rightarrow \psi\left(\overline{\Gamma^{\top}},\ulcorner n) .\right.
\end{aligned}
$$

Exercise 3. Recall that the notation $\square \phi$ stands for $\exists x \operatorname{Prf}(x, \overline{\ulcorner\phi\urcorner})$ and that for \square the following three "derivability conditions" hold:

D1 PA $\vdash \phi$ implies $\mathrm{PA} \vdash \square \phi$
$\mathrm{D} 2 \mathrm{PA} \vdash \square(\phi \rightarrow \psi) \rightarrow(\square \phi \rightarrow \square \psi)$
D3 PA $\vdash \square \phi \rightarrow \square \square \phi$
Let G be the Gödel sentence, which satisfies PA $\vdash G \leftrightarrow \neg \square G$. By the Diagonalisation Lemma let H be a sentence such that

$$
\mathrm{PA} \vdash H \leftrightarrow(G \rightarrow \neg \square H)
$$

a) Prove that PA $\vdash H \leftrightarrow(\square H \rightarrow \square \perp)$
b) Prove that PA $\vdash \square \neg H \rightarrow H$
c) Show that H is true in the standard model, but not provable in PA [Hint: consider whether or not $\square H$ is true in the standard model].
d) Show that $G \rightarrow H$ is not provable in PA.

Solution: a) By Gödel's Second Incompleteness Theorem we have PA $\vdash G \leftrightarrow$ $\neg \square \perp$; hence PA $\vdash H \leftrightarrow(\neg \square \perp \rightarrow \neg \square H)$, from which the conclusion follows by contraposition.
b) By Logic, PA $\vdash \neg H \leftrightarrow(H \rightarrow \perp)$. Using D2 and part a) we get

$$
\mathrm{PA} \vdash \square \neg H \leftrightarrow \square(H \rightarrow \perp) \rightarrow(\square H \rightarrow \square \perp) \leftrightarrow H
$$

c) Suppose $\square H$ is true in the standard model. Then H is provable in PA and hence true too. Also, $\neg \square H$ is false and therefore $G \rightarrow \neg \square H$ is false (since G is true). But this last sentence is equivalent (in PA) to H; contradiction.

So $\square H$ is false and H is not provable in PA. So $\neg \square H$ is true whence $G \rightarrow$ $\neg \square H$ is true, and therefore H is true.
d) We have the following equivalences in PA:

$$
\mathrm{PA} \vdash(G \rightarrow H) \leftrightarrow(G \rightarrow(G \rightarrow \neg \square H)) \leftrightarrow(G \rightarrow \neg \square H) \leftrightarrow H
$$

So if $\mathrm{PA} \vdash G \rightarrow H$ then $\mathrm{PA} \vdash H$; quod non, by the previous part.
Exercise 4. We consider a nonstandard model \mathcal{M} of PA. Let F and G be two primitive recursive functions, and $\phi_{F}(x, y), \phi_{G}(x, y)$ formulas which represent F and G respectively in PA. Let $F^{\mathcal{M}}$ and $G^{\mathcal{M}}$ be the functions on \mathcal{M} such that $\mathcal{M} \models \phi_{F}\left(a, F^{\mathcal{M}}(a)\right) \wedge \phi_{G}\left(a, G^{\mathcal{M}}(a)\right)$ for all $a \in \mathcal{M}$.

We say that F is eventually dominated by G (notation: $F \preceq G$) if there is a natural number n such that for every natural number $m>n$ we have $F(m) \leq G(m)$.
a) Show that there cannot exist an L_{PA}-formula $\psi\left(x, y_{1}, \ldots, y_{k}\right)$ and elements c_{1}, \ldots, c_{k} of \mathcal{M} such that

$$
\mathbb{N}=\left\{a \in \mathcal{M} \mid \mathcal{M} \models \psi\left(a, c_{1}, \ldots, c_{k}\right)\right\}
$$

b) Show that for every L_{PA}-formula $\psi\left(x, y_{1}, \ldots, y_{k}\right)$ and every k-tuple c_{1}, \ldots, c_{k} of elements of \mathcal{M} the following two statements are equivalent:
i) For every standard element n there is a standard element $m>n$ such that $\mathcal{M} \models \psi\left(m, c_{1}, \ldots, c_{k}\right)$
ii) For every nonstandard $a \in \mathcal{M}$ there is a nonstandard $b<a$ in \mathcal{M} such that $\mathcal{M} \models \psi\left(b, c_{1}, \ldots, c_{k}\right)$
c) Show that $F \preceq G$ holds precisely if there is a nonstandard element $c \in \mathcal{M}$ such that for every nonstandard $d<c$ in \mathcal{M} we have $F^{\mathcal{M}}(d) \leq G^{\mathcal{M}}(d)$.

Solution: a) Suppose such ψ and tuple \vec{c} exist. Then $\mathcal{M} \models \psi(0, \vec{c})$ and $\mathcal{M} \models$ $\forall x(\psi(x, \vec{c}) \rightarrow \psi(x+1, \vec{c}))$. Because \mathcal{M} satisfies the induction axiom for ψ (with arbitrary free variables!), it follows that $\mathcal{M} \vDash \forall x \psi(x, \vec{c})$. But this contradicts the assumption, since \mathcal{M} is nonstandard.

Alternatively one might say: if $\psi(n, \vec{c})$ is true in \mathcal{M} for all standard n, then by Overspill there must be a nonstandard $d \in \mathcal{M}$ such that $\psi(d, \vec{c})$; contradicting the assumption.
b) i) \Rightarrow ii): suppose i) and, for contradiction, that for some nonstandard c we have that $\mathcal{M} \models \neg \psi(d, \vec{c})$ for all nonstandard $d<c$. Then the formula

$$
x<c \wedge \exists y(x<y<c \wedge \psi(y, \vec{c}))
$$

defines the standard numbers, contradicting part a).
ii) \Rightarrow i): suppose ii) and, for contradiction, that for some standard n we have that $\mathcal{M} \models \neg \psi(m, \vec{c})$ for all standard $m>n$. Then the formula

$$
x \leq n \vee(x>n \wedge \forall y(n<y \leq x \rightarrow \neg \psi(y, \vec{c})))
$$

defines the standard numbers, contradicting part a).
c) Let $\psi(x)$ be the formula $\forall y z\left(\phi_{F}(x, y) \wedge \phi_{G}(x, z) \rightarrow y \leq z\right)$. Then the statement $F \npreceq G$ is equivalent to: for every standard n there is a standard $m>n$ such that $\mathcal{M} \models \neg \psi(m)$. By part b), this is equivalent to: for every nonstandard a there is a nonstandard $b<a$ such that $\mathcal{M} \models \neg \psi(b)$.

Hence $F \preceq G$ is equivalent to: there is a nonstandard c such that for all nonstandard $d<c, \mathcal{M} \models \psi(d)$. That is: there is a nonstandard c such that for every nonstandard $d<c, F^{\mathcal{M}}(d) \leq G^{\mathcal{M}}(d)$, as required.

