Exam Gödel's Incompleteness Theorems May 26, 2010, 14.00–17.00

THIS EXAM CONSISTS OF 4 PROBLEMS; SEE ALSO BACK SIDE Advice: first do those problems you can do right away; then, start thinking about the others. Good luck!

1. Let ϕ, ψ be sentences of PA. Define C by the following abstract syntax:

$$\mathcal{C} := \phi \mid \psi \mid \mathcal{C} \land \mathcal{C} \mid \neg \mathcal{C}$$

More precisely, C is the smallest class of sentences such that

$$\begin{array}{ccc} \phi, \psi \in \mathcal{C} \\ \chi, \theta \in \mathcal{C} & \Rightarrow & (\chi \land \theta) \in \mathcal{C} \\ \chi \in \mathcal{C} & \Rightarrow & (\neg \chi) \in \mathcal{C}. \end{array}$$

(a) Show precisely that C is primitive recursive, by proving that there is a primitive recursive function g such that for all sentences χ one has

$$\begin{split} \chi \in \mathcal{C} & \Leftrightarrow \quad g(\lceil \chi \rceil) = 1; \\ \chi \notin \mathcal{C} & \Leftrightarrow \quad g(\lceil \chi \rceil) = 0. \end{split}$$

You may devise your own coding for these sentences.

(b) Show that there is a PA formula $\Xi(x)$ with $FV(\Xi) = \{x\}$, such that

$$\begin{split} \chi \in \mathcal{C} &\Rightarrow \operatorname{PA} \vdash \Xi(\overline{\lceil \chi \rceil}); \\ \chi \notin \mathcal{C} &\Rightarrow \operatorname{PA} \vdash \neg \Xi(\overline{\lceil \chi \rceil}) \end{split}$$

(c) Show that there is a formula $\Omega(x)$ with $FV(\Omega) = \{x\}$ such that

$$\mathrm{PA} \vdash \Omega(\overline{\lceil \chi \rceil}) \iff \chi, \text{ for all } \chi \in \mathcal{C}.$$

2. Given a sentence ϕ of PA, define ϕ_n as $\Box^n(\phi)$, for $n \in \mathbb{N}$. More precisely

$$\begin{array}{rcl} \phi_0 & = & \phi, \\ \phi_{n+1} & = & \Box(\phi_n). \end{array}$$

(a) Show that there is a primitive recursive function f such that for all sentences ϕ and all $n \in \mathbb{N}$ one has

$$f(n, \lceil \phi \rceil) = \lceil \phi_n \rceil.$$

(b) Show that if PA is consistent, then there is no formula $\Theta(x, a)$ with $FV(\Theta) = \{x, a\}$, such that for all sentences ϕ and all $n \in \mathbb{N}$ one has

$$\mathrm{PA} \vdash \Theta(\overline{n}, \overline{\lceil \phi \rceil}) \leftrightarrow \phi_n.$$

[Hint. Suppose Θ exists. Define $\triangle(\phi) = \Theta(\overline{0}, \overline{\lceil \phi \rceil})$. Then for all sentences ϕ one has

$$\mathrm{PA} \vdash \triangle(\phi) \leftrightarrow \phi.$$

Immitating the liar paradox, apply the Diagonalization Lemma to get a contradiction.]

(c) Show that there is a formula $\Theta(x, a)$ with $FV(\Theta) = \{x, a\}$, such that for all sentences ϕ and all $n \in \mathbb{N}$, with n > 0 one has

$$\mathrm{PA} \vdash \Theta(\overline{n}, \overline{\lceil \phi \rceil}) \leftrightarrow \phi_n.$$

3. In this exercise, you may assume that PA is consistent. By the Diagonaization Lemma, let G be a sentence in the language of PA such that

$$\mathrm{PA}\,\vdash\,G\leftrightarrow\Box\neg\Box G$$

We recall that in the course we proved the following three *derivability conditions*:

D1 PA
$$\vdash \phi \Rightarrow$$
 PA $\vdash \Box \phi$
D2 PA $\vdash \Box (\phi \rightarrow \psi) \rightarrow (\Box \phi \rightarrow \Box \psi)$
D3 PA $\vdash \Box \phi \rightarrow \Box \Box \phi$

(a) Prove that for any two sentences ϕ and ψ in the language of PA,

$$\mathbf{PA} \vdash \Box(\phi \land \psi) \leftrightarrow \Box\phi \land \Box\psi$$

- (b) Prove that $PA \vdash G \rightarrow \Box \bot$. Conclude that G is false in the standard model.
- (c) Prove that also, $PA \vdash \Box \bot \rightarrow G$.
- (d) Conclude from the previous two items that G is independent of PA.
- 4. Let \mathcal{M} be a nonstandard model of PA.
 - (a) Show that there exists a nonstandard element a ∈ M such that the set {a ± n | n ∈ N} contains no squares.
 [Hint: take c ∈ M nonstandard; consider c² and (c + 1)²]
 - (b) Define the relation \ll between nonstandard elements of \mathcal{M} by: $a \ll b$ iff for all standard n, na < b. Prove that $a \ll b$ is equivalent to: there is a nonstandard element c such that ac < b.
 - (c) Prove that the relation \ll is dense, that is: if $a \ll b$ then there is an element c such that $a \ll c \ll b$.

Solution Exercise 3:

a) This could be done in a number of ways, but the point of the exercise is that you can do almost everything just making use of D1–D3. So I present the solution in this way.

 $PA \vdash \phi \land \psi \rightarrow \phi$ by Logic, hence by D1 we have $PA \vdash \Box(\phi \land \psi \rightarrow \phi)$ whence by D2, $PA \vdash \Box(\phi \land \psi) \rightarrow \Box \phi$. Similarly, $PA \vdash \Box(\phi \land \psi) \rightarrow \Box \psi$, so $PA \vdash \Box(\phi \land \psi) \rightarrow \Box \phi \land \Box \psi$. For the converse, we observe that $PA \vdash \phi \rightarrow$ $(\psi \rightarrow \phi \land \psi)$ by Logic, hence by using D1 and twice D2 we get $PA \vdash \Box \phi \rightarrow$ $(\Box \psi \rightarrow \Box(\phi \land \psi))$ and therefore by Logic $PA \vdash (\Box \phi \land \Box \psi) \rightarrow \Box(\phi \land \psi)$ as desired. This part was worth 3 points: 1 for the first implication, 2 for the second.

b) Let's write H for $\neg \Box G$, so $\mathsf{PA} \vdash G \leftrightarrow \Box H$. By D1 and D2, applied to $\vdash \Box H \to G$, we get $\vdash \Box \Box H \to \Box G$. By D3 we have $\vdash \Box H \to \Box \Box H$. Combining, we see that $\vdash G \to \Box G$. By another application of D3 we have $\vdash G \to \Box \Box G$. But by choice of G we also have $\vdash G \to \Box \neg \Box G$. Applying part a) we see that $\vdash G \to \Box (\Box G \land \neg \Box G)$. Since $\vdash \Box G \land \neg \Box G \to \bot$ by Logic, hence $\vdash \Box (\Box G \land \neg \Box G) \to \Box \bot$ by D1 and D2, we have $\vdash G \to \Box \bot$ as required.

It follows that $G \to \Box \bot$ is true in the standard model (in fact, in any model); by assumption (that PA is consistent), $\Box \bot$ is false in the standard model. Hence G is false in the standard model.

This part was worth 3 points: 2 for the derivation of $\vdash G \rightarrow \Box \bot$, and 1 for the conclusion that G is false in the standard model.

- c) By Logic we have $\vdash \perp \rightarrow \neg \Box G$, so D1 and D2 give us $\vdash \Box \perp \rightarrow \Box \neg \Box G$; so by choice of $G, \vdash \Box \perp \rightarrow G$. This part was worth 2 points.
- d) By the Second Incompleteness Theorem, $\neg \Box \bot$ is independent of PA so its negation, $\Box \bot$ is also independent of PA. In parts b) and c) we have seen that PA $\vdash G \leftrightarrow \Box \bot$. It follows that also G is independent of PA. This part was worth 2 points.

Solution Exercise 4:

- a) Take $c \in \mathcal{M}$ nonstandard. Then $(c+1)^2 = c^2 + 2c + 1 > c^2 + n$ for all standard n, so $(c+1)^2$ lies in a different copy of \mathbb{Z} than the one c^2 lies in. Since the ordering of copies of \mathbb{Z} is dense, there is a copy of \mathbb{Z} lying in between. That copy cannot contain any squares, because the sentence $\forall x(x^2 \leq c^2 \lor (c+1)^2 \leq x^2)$ is true in \mathcal{M} (it is a theorem of PA). So if a is an element of that copy, a satisfies the statement. This part was worth 4 points.
- b) If ac < b for some nonstandard c then certainly an < b for all standard n, since n < c and multiplication is monotone. For the converse, suppose an < b for all standard n. Then by Overspill there must be a nonstandard element c such that ac < b. To spell it out: suppose ac < b does not hold for any nonstandard c. Then we have $\mathcal{M} \models a0 < b$ (since b is nonstandard) and $\mathcal{M} \models \forall y(ay < b \rightarrow a(y+1) < b)$ so by Induction we would have $\mathcal{M} \models \forall y(ay < b)$ which is absurd. This part was worth 3 points.

c) Suppose a, b nonstandard and $a \ll b$. Pick (by b)) a nonstandard c such that ac < b. Let d be the least element such that $c \leq (d+1)^2$. This exists because the function $F(y) = \mu z < y.y \leq (z+1)^2$ is primitive recursive, hence representable in PA, hence a function in \mathcal{M} . Then d is nonstandard, and $d^2 < c$. Alternatively one can say: for all standard $n, \mathcal{M} \models n^2 < c$ hence by overspill there is a nonstandard d such that $d^2 < c$.

We see that a(d-1) < ad so $a \ll ad$, and $(ad)d = ad^2 < ac < b$ so $ad \ll b$. We conclude that \ll is dense. This part was worth 3 points.