Exam Gödel's Incompleteness Theorems

May 26, 2010, 14.00-17.00

THIS EXAM CONSISTS OF 4 PROBLEMS; SEE ALSO BACK SIDE
Advice: first do those problems you can do right away; then, start thinking about the others. Good luck!

1. Let ϕ, ψ be sentences of PA. Define \mathcal{C} by the following abstract syntax:

$$
\mathcal{C}:=\phi|\psi| \mathcal{C} \wedge \mathcal{C} \mid \neg \mathcal{C}
$$

More precisely, \mathcal{C} is the smallest class of sentences such that

$$
\begin{aligned}
& \phi, \psi \in \mathcal{C} \\
\chi, \theta \in \mathcal{C} & \Rightarrow(\chi \wedge \theta) \in \mathcal{C} \\
\chi \in \mathcal{C} & \Rightarrow(\neg \chi) \in \mathcal{C} .
\end{aligned}
$$

(a) Show precisely that \mathcal{C} is primitive recursive, by proving that there is a primitive recursive function g such that for all sentences χ one has

$$
\begin{aligned}
\chi \in \mathcal{C} & \Leftrightarrow g\left({ }^{\ulcorner } \chi^{\top}\right)=1 ; \\
\chi \notin \mathcal{C} & \Leftrightarrow g\left({ }^{(} \chi^{\top}\right)=0 .
\end{aligned}
$$

You may devise your own coding for these sentences.
(b) Show that there is a PA formula $\Xi(x)$ with $\mathrm{FV}(\Xi)=\{x\}$, such that

$$
\begin{aligned}
\chi \in \mathcal{C} & \Rightarrow \mathrm{PA} \vdash \Xi\left(\overline{\Gamma \chi^{\urcorner}}\right) ; \\
\chi \notin \mathcal{C} & \Rightarrow \mathrm{PA} \vdash \neg \Xi\left(\overline{\Gamma^{\top} \chi^{7}}\right) .
\end{aligned}
$$

(c) Show that there is a formula $\Omega(x)$ with $\mathrm{FV}(\Omega)=\{x\}$ such that

$$
\mathrm{PA} \vdash \Omega\left(\overline{\Gamma^{\top}}\right) \leftrightarrow \chi, \text { for all } \chi \in \mathcal{C}
$$

2. Given a sentence ϕ of PA, define ϕ_{n} as $\square^{n}(\phi)$, for $n \in \mathbb{N}$. More precisely

$$
\begin{aligned}
\phi_{0} & =\phi, \\
\phi_{n+1} & =\square\left(\phi_{n}\right) .
\end{aligned}
$$

(a) Show that there is a primitive recursive function f such that for all sentences ϕ and all $n \in \mathbb{N}$ one has

$$
f\left(n,\left\ulcorner\phi^{\top}\right)=\left\ulcorner\phi_{n}{ }^{\top} .\right.\right.
$$

(b) Show that if PA is consistent, then there is no formula $\Theta(x, a)$ with $\operatorname{FV}(\Theta)=\{x, a\}$, such that for all sentences ϕ and all $n \in \mathbb{N}$ one has

$$
\mathrm{PA} \vdash \Theta\left(\bar{n}, \overline{\Gamma^{\top}}\right) \leftrightarrow \phi_{n} .
$$

[Hint. Suppose Θ exists. Define $\triangle(\phi)=\Theta\left(\overline{0}, \overline{\phi^{7}}\right)$. Then for all sentences ϕ one has

$$
\mathrm{PA} \vdash \triangle(\phi) \leftrightarrow \phi
$$

Immitating the liar paradox, apply the Diagonalization Lemma to get a contradiction.]
(c) Show that there is a formula $\Theta(x, a)$ with $\operatorname{FV}(\Theta)=\{x, a\}$, such that for all sentences ϕ and all $n \in \mathbb{N}$, with $n>0$ one has

$$
\operatorname{PA} \vdash \Theta\left(\bar{n}, \overline{\Gamma \phi^{7}}\right) \leftrightarrow \phi_{n} .
$$

3. In this exercise, you may assume that PA is consistent. By the Diagonaization Lemma, let G be a sentence in the language of PA such that

$$
\mathrm{PA} \vdash G \leftrightarrow \square \neg \square G
$$

We recall that in the course we proved the following three derivability conditions:

$$
\begin{array}{ll}
\mathrm{D} & \mathrm{PA} \vdash \phi \Rightarrow \mathrm{PA} \vdash \square \phi \\
\mathrm{D} & \mathrm{PA} \vdash \square(\phi \rightarrow \psi) \rightarrow(\square \phi \rightarrow \square \psi) \\
\mathrm{D} & \mathrm{PA} \vdash \square \phi \rightarrow \square \square \phi
\end{array}
$$

(a) Prove that for any two sentences ϕ and ψ in the language of PA,

$$
\mathrm{PA} \vdash \square(\phi \wedge \psi) \leftrightarrow \square \phi \wedge \square \psi
$$

(b) Prove that $\mathrm{PA} \vdash G \rightarrow \square \perp$. Conclude that G is false in the standard model.
(c) Prove that also, $\mathrm{PA} \vdash \square \perp \rightarrow G$.
(d) Conclude from the previous two items that G is independent of PA.
4. Let \mathcal{M} be a nonstandard model of PA.
(a) Show that there exists a nonstandard element $a \in \mathcal{M}$ such that the set $\{a \pm n \mid n \in \mathbb{N}\}$ contains no squares.
[Hint: take $c \in \mathcal{M}$ nonstandard; consider c^{2} and $(c+1)^{2}$]
(b) Define the relation \ll between nonstandard elements of \mathcal{M} by: $a \ll b$ iff for all standard $n, n a<b$. Prove that $a \ll b$ is equivalent to: there is a nonstandard element c such that $a c<b$.
(c) Prove that the relation \ll is dense, that is: if $a \ll b$ then there is an element c such that $a \ll c \ll b$.

Solution Exercise 3:

a) This could be done in a number of ways, but the point of the exercise is that you can do almost everything just making use of D1-D3. So I present the solution in this way
$\mathrm{PA} \vdash \phi \wedge \psi \rightarrow \phi$ by Logic, hence by D1 we have $\mathrm{PA} \vdash \square(\phi \wedge \psi \rightarrow \phi)$ whence by D2, PA $\vdash \square(\phi \wedge \psi) \rightarrow \square \phi$. Similarly, $\mathrm{PA} \vdash \square(\phi \wedge \psi) \rightarrow \square \psi$, so $\mathrm{PA} \vdash \square(\phi \wedge \psi) \rightarrow \square \phi \wedge \square \psi$. For the converse, we observe that $\mathrm{PA} \vdash \phi \rightarrow$ $(\psi \rightarrow \phi \wedge \psi)$ by Logic, hence by using D1 and twice D2 we get PA $\vdash \square \phi \rightarrow$ $(\square \psi \rightarrow \square(\phi \wedge \psi))$ and therefore by Logic PA $\vdash(\square \phi \wedge \square \psi) \rightarrow \square(\phi \wedge \psi)$ as desired. This part was worth 3 points: 1 for the first implication, 2 for the second.
b) Let's write H for $\neg \square G$, so PA $\vdash G \leftrightarrow \square H$. By D1 and D2, applied to $\vdash \square H \rightarrow G$, we get $\vdash \square \square H \rightarrow \square G$. By D3 we have $\vdash \square H \rightarrow \square \square H$. Combining, we see that $\vdash G \rightarrow \square G$. By another application of D3 we have $\vdash G \rightarrow \square \square G$. But by choice of G we also have $\vdash G \rightarrow \square \neg \square G$. Applying part a) we see that $\vdash G \rightarrow \square(\square G \wedge \neg \square G)$. Since $\vdash \square G \wedge \neg \square G \rightarrow \perp$ by Logic, hence $\vdash \square(\square G \wedge \neg \square G) \rightarrow \square \perp$ by D1 and D2, we have $\vdash G \rightarrow \square \perp$ as required.

It follows that $G \rightarrow \square \perp$ is true in the standard model (in fact, in any model); by assumption (that PA is consistent), $\square \perp$ is false in the standard model. Hence G is false in the standard model.
This part was worth 3 points: 2 for the derivation of $\vdash G \rightarrow \square \perp$, and 1 for the conclusion that G is false in the standard model.
c) By Logic we have $\vdash \perp \rightarrow \neg \square G$, so D1 and D2 give us $\vdash \square \perp \rightarrow \square \neg \square G$; so by choice of $G, \vdash \square \perp \rightarrow G$. This part was worth 2 points.
d) By the Second Incompleteness Theorem, $\neg \square \perp$ is independent of PA so its negation, $\square \perp$ is also independent of PA. In parts b) and c) we have seen that $\mathrm{PA} \vdash G \leftrightarrow \square \perp$. It follows that also G is independent of PA. This part was worth 2 points.

Solution Exercise 4:

a) Take $c \in \mathcal{M}$ nonstandard. Then $(c+1)^{2}=c^{2}+2 c+1>c^{2}+n$ for all standard n, so $(c+1)^{2}$ lies in a different copy of \mathbb{Z} than the one c^{2} lies in. Since the ordering of copies of \mathbb{Z} is dense, there is a copy of \mathbb{Z} lying in between. That copy cannot contain any squares, because the sentence $\forall x\left(x^{2} \leq c^{2} \vee(c+1)^{2} \leq x^{2}\right)$ is true in \mathcal{M} (it is a theorem of PA). So if a is an element of that copy, a satisfies the statement. This part was worth 4 points.
b) If $a c<b$ for some nonstandard c then certainly $a n<b$ for all standard n, since $n<c$ and multiplication is monotone. For the converse, suppose $a n<b$ for all standard n. Then by Overspill there must be a nonstandard element c such that $a c<b$. To spell it out: suppose $a c<b$ does not hold for any nonstandard c. Then we have $\mathcal{M} \models a 0<b$ (since b is nonstandard) and $\mathcal{M} \models \forall y(a y<b \rightarrow a(y+1)<b)$ so by Induction we would have $\mathcal{M} \models \forall y(a y<b)$ which is absurd. This part was worth 3 points.
c) Suppose a, b nonstandard and $a \ll b$. Pick (by b)) a nonstandard c such that $a c<b$. Let d be the least element such that $c \leq(d+1)^{2}$. This exists because the function $F(y)=\mu z<y . y \leq(z+1)^{2}$ is primitive recursive, hence representable in PA, hence a function in \mathcal{M}. Then d is nonstandard, and $d^{2}<c$. Alternatively one can say: for all standard $n, \mathcal{M} \models n^{2}<c$ hence by overspill there is a nonstandard d such that $d^{2}<c$.
We see that $a(d-1)<a d$ so $a \ll a d$, and $(a d) d=a d^{2}<a c<b$ so $a d \ll b$. We conclude that \ll is dense. This part was worth 3 points.

