
Exam Gödel’s Incompleteness Theorems
May 26, 2010, 14.00–17.00

THIS EXAM CONSISTS OF 4 PROBLEMS; SEE ALSO BACK SIDE

Advice: first do those problems you can do right away; then, start thinking

about the others. Good luck!

1. Let φ, ψ be sentences of PA. Define C by the following abstract syntax:

C := φ | ψ | C ∧ C | ¬C

More precisely, C is the smallest class of sentences such that

φ, ψ ∈ C
χ, θ ∈ C ⇒ (χ ∧ θ) ∈ C
χ ∈ C ⇒ (¬χ) ∈ C.

(a) Show precisely that C is primitive recursive, by proving that there is
a primitive recursive function g such that for all sentences χ one has

χ ∈ C ⇔ g( χ ) = 1;

χ /∈ C ⇔ g( χ ) = 0.

You may devise your own coding for these sentences.

(b) Show that there is a PA formula Ξ(x) with FV(Ξ) = {x}, such that

χ ∈ C ⇒ PA ⊢ Ξ( χ );

χ /∈ C ⇒ PA ⊢ ¬Ξ( χ ).

(c) Show that there is a formula Ω(x) with FV(Ω) = {x} such that

PA ⊢ Ω( χ ) ↔ χ, for all χ ∈ C.

2. Given a sentence φ of PA, define φn as �
n(φ), for n ∈ IN. More precisely

φ0 = φ,

φn+1 = �(φn).

(a) Show that there is a primitive recursive function f such that for all
sentences φ and all n ∈ IN one has

f(n, φ ) = φn .

(b) Show that if PA is consistent, then there is no formula Θ(x, a) with
FV(Θ) = {x, a}, such that for all sentences φ and all n ∈ IN one has

PA ⊢ Θ(n, φ ) ↔ φn.
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[Hint. Suppose Θ exists. Define △(φ) = Θ(0, φ ). Then for all
sentences φ one has

PA ⊢ △(φ) ↔ φ.

Immitating the liar paradox, apply the Diagonalization Lemma to
get a contradiction.]

(c) Show that there is a formula Θ(x, a) with FV(Θ) = {x, a}, such that
for all sentences φ and all n ∈ IN, with n > 0 one has

PA ⊢ Θ(n, φ ) ↔ φn.

3. In this exercise, you may assume that PA is consistent. By the Diago-
naization Lemma, let G be a sentence in the language of PA such that

PA ⊢ G↔ �¬�G

We recall that in the course we proved the following three derivability

conditions:
D1 PA ⊢ φ ⇒ PA ⊢ �φ
D2 PA ⊢ �(φ→ ψ) → (�φ→ �ψ)
D3 PA ⊢ �φ→ ��φ

(a) Prove that for any two sentences φ and ψ in the language of PA,

PA ⊢ �(φ ∧ ψ) ↔ �φ ∧ �ψ

(b) Prove that PA ⊢ G→ �⊥. Conclude that G is false in the standard
model.

(c) Prove that also, PA ⊢ �⊥ → G.

(d) Conclude from the previous two items that G is independent of PA.

4. Let M be a nonstandard model of PA.

(a) Show that there exists a nonstandard element a ∈ M such that the
set {a± n |n ∈ IN} contains no squares.
[Hint: take c ∈ M nonstandard; consider c2 and (c+ 1)2]

(b) Define the relation ≪ between nonstandard elements of M by: a≪ b
iff for all standard n, na < b. Prove that a≪ b is equivalent to: there
is a nonstandard element c such that ac < b.

(c) Prove that the relation ≪ is dense, that is: if a≪ b then there is an
element c such that a≪ c≪ b.

Solution Exercise 3:

a) This could be done in a number of ways, but the point of the exercise is
that you can do almost everything just making use of D1–D3. So I present
the solution in this way.
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PA ⊢ φ ∧ ψ → φ by Logic, hence by D1 we have PA ⊢ �(φ ∧ ψ → φ)
whence by D2, PA ⊢ �(φ∧ψ) → �φ. Similarly, PA ⊢ �(φ∧ψ) → �ψ, so
PA ⊢ �(φ ∧ ψ) → �φ ∧ �ψ. For the converse, we observe that PA ⊢ φ→
(ψ → φ∧ψ) by Logic, hence by using D1 and twice D2 we get PA ⊢ �φ→
(�ψ → �(φ ∧ ψ)) and therefore by Logic PA ⊢ (�φ ∧ �ψ) → �(φ ∧ ψ)
as desired. This part was worth 3 points: 1 for the first implication, 2 for
the second.

b) Let’s write H for ¬�G, so PA ⊢ G ↔ �H . By D1 and D2, applied
to ⊢ �H → G, we get ⊢ ��H → �G. By D3 we have ⊢ �H → ��H .
Combining, we see that ⊢ G→ �G. By another application of D3 we have
⊢ G → ��G. But by choice of G we also have ⊢ G → �¬�G. Applying
part a) we see that ⊢ G → �(�G ∧ ¬�G). Since ⊢ �G ∧ ¬�G → ⊥ by
Logic, hence ⊢ �(�G ∧ ¬�G) → �⊥ by D1 and D2, we have ⊢ G→ �⊥
as required.

It follows that G → �⊥ is true in the standard model (in fact, in any
model); by assumption (that PA is consistent), �⊥ is false in the standard
model. Hence G is false in the standard model.

This part was worth 3 points: 2 for the derivation of ⊢ G → �⊥, and 1
for the conclusion that G is false in the standard model.

c) By Logic we have ⊢ ⊥ → ¬�G, so D1 and D2 give us ⊢ �⊥ → �¬�G; so
by choice of G, ⊢ �⊥ → G. This part was worth 2 points.

d) By the Second Incompleteness Theorem, ¬�⊥ is independent of PA so its
negation, �⊥ is also independent of PA. In parts b) and c) we have seen
that PA ⊢ G ↔ �⊥. It follows that also G is independent of PA. This
part was worth 2 points.

Solution Exercise 4:

a) Take c ∈ M nonstandard. Then (c + 1)2 = c2 + 2c + 1 > c2 + n for all
standard n, so (c + 1)2 lies in a different copy of Z than the one c2 lies
in. Since the ordering of copies of Z is dense, there is a copy of Z lying
in between. That copy cannot contain any squares, because the sentence
∀x(x2 ≤ c2 ∨ (c + 1)2 ≤ x2) is true in M (it is a theorem of PA). So if a
is an element of that copy, a satisfies the statement. This part was worth
4 points.

b) If ac < b for some nonstandard c then certainly an < b for all standard
n, since n < c and multiplication is monotone. For the converse, suppose
an < b for all standard n. Then by Overspill there must be a nonstandard
element c such that ac < b. To spell it out: suppose ac < b does not
hold for any nonstandard c. Then we have M |= a0 < b (since b is
nonstandard) and M |= ∀y(ay < b → a(y + 1) < b) so by Induction we
would have M |= ∀y(ay < b) which is absurd. This part was worth 3
points.
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c) Suppose a, b nonstandard and a ≪ b. Pick (by b)) a nonstandard c such
that ac < b. Let d be the least element such that c ≤ (d+1)2. This exists
because the function F (y) = µz < y.y ≤ (z + 1)2 is primitive recursive,
hence representable in PA, hence a function in M. Then d is nonstandard,
and d2 < c. Alternatively one can say: for all standard n, M |= n2 < c
hence by overspill there is a nonstandard d such that d2 < c.

We see that a(d−1) < ad so a≪ ad, and (ad)d = ad2 < ac < b so ad≪ b.
We conclude that ≪ is dense. This part was worth 3 points.
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