Retake Exam Gödel's Incompleteness Theorems

June 25, 2015, 10.00–13.00 With Solutions

THIS EXAM CONSISTS OF 4 PROBLEMS; SEE ALSO BACK SIDE

Advice: first do those problems you can do right away; then, start thinking about the others.

Please write your name, student number and e-mail address clearly on the sheets you hand in

Good luck!

Exercise 1. Let $f : \mathbb{N} \to \mathbb{N}$ and $g : \mathbb{N} \to \mathbb{N}$ be the two functions which are uniquely determined by the equation

$$n = 2^{f(n)}(2g(n) + 1) - 1$$

for all $n \in \mathbb{N}$.

Show that the functions f and g are primitive recursive.

Solution: The function $n \mapsto 2^n$ is primitive recursive, as well as the relation x|y. Also, the primitive recursive functions are closed under bounded minimisation. So the function f, which can be defined as

 $f(n) = \mu z \le n.2^{z+1} \not| (n+1)$

is primitive recursive. Then the function g, which can be defined as

$$g(n) = \mu z \le n.zf(n) = n+1$$

is also primitive recursive.

Exercise 2.

- a) Let ϕ be an \mathcal{L}_{PA} -sentence which is true in all *nonstandard* models of PA. Prove that $PA \vdash \phi$.
- b) Let \mathcal{M} be a nonstandard model of PA, and let ϕ be an $\mathcal{L}_{PA}(\mathcal{M})$ sentence (so a sentence with constants from the model \mathcal{M}) which is
 true in every proper end-extension of \mathcal{M} . Prove that $\mathcal{M} \models \phi$.

Solution: This exercise is basically about the concept of *elementary extension*.

a) We only need to show that $\mathcal{N} \models \phi$, where \mathcal{N} denotes the standard model. For then, we know that every model of PA satisfies ϕ , whence $PA \vdash \phi$ by the Completeness Theorem for first-order logic.

By considering the $\mathcal{L}_{PA} \cup \{c\}$ -theory $\{\phi \mid \mathcal{N} \models \phi\} \cup \{c > \overline{n} \mid n \in \mathbb{N}\}$, which is consistent by the Compactness Theorem, we see that \mathcal{N} has a proper elementary extension, which satisfies ϕ because it is a nonstandard model. By elementariness, $\mathcal{N} \models \phi$, as desired.

b) Here we use the McDowell-Specker Theorem, which says that \mathcal{M} has a proper elementary end-extension. This extension satisfies ϕ by assumption; hence by elementariness, $\mathcal{M} \models \phi$.

Exercise 3. Recall that the notation $\Box \phi$ stands for $\exists x \Pr(x, \ulcorner \phi \urcorner)$ and that for \Box the following three "derivability conditions" hold:

- D1 PA $\vdash \phi$ implies PA $\vdash \Box \phi$
- D2 PA $\vdash \Box(\phi \rightarrow \psi) \rightarrow (\Box \phi \rightarrow \Box \psi)$
- D3 PA $\vdash \Box \phi \rightarrow \Box \Box \phi$

You may use without proof, that conditions D1 and D2 imply PA $\vdash \Box(\phi \land \psi) \leftrightarrow \Box \phi \land \Box \psi$. Let G be the Gödel sentence: PA $\vdash G \leftrightarrow \neg \Box G$.

a) Prove that there is a sentence ϕ satisfying

$$\mathrm{PA} \vdash \phi \leftrightarrow (G \rightarrow \neg \Box \phi)$$

- b) For ϕ as in a), prove: if $PA \vdash \phi$ then $PA \vdash \Box \perp$.
- c) For ϕ as in a), prove: if $PA \vdash \neg \phi$ then $PA \vdash \bot$.

Solution: a) Apply the Diagonalisation Lemma to the formula $G \to \neg \exists x \overline{\Pr}(x, v)$.

b) Assume $PA \vdash \phi$. Then $PA \vdash G \rightarrow \neg \Box \phi$ by choice of ϕ , and also $PA \vdash \Box \phi$ by the assumption and D1. Hence, $PA \vdash \neg G$. By Gödel's Second Incompleteness Theorem, $PA \vdash G \leftrightarrow \neg \Box \bot$. So, $PA \vdash \Box \bot$. c) Assume $PA \vdash \neg \phi$. Then $PA \vdash \Box \neg \phi$ by D1, and $PA \vdash G \land \Box \phi$ by choice of ϕ and logic. Combining $PA \vdash \Box \phi$ and $PA \vdash \Box \neg \phi$ we obtain $PA \vdash \Box \bot$; and combining this with $PA \vdash G$, so again $PA \vdash \neg \Box \bot$ by Gödel's Second, we get $PA \vdash \bot$.

Exercise 4. For this exercise, I remind you of the *partial truth predicates* for PA: there is a Σ_n -formula $\operatorname{Tr}_n(y, s)$ such that for every Σ_n -formula $\phi(v_0)$ with at most the variable v_0 free, we have

$$\mathrm{PA} \vdash \forall s(\mathrm{Tr}_n(\overline{\neg \phi \neg}, s) \leftrightarrow \phi[s/v_0])$$

Let a sequence $\phi_0(v_0), \phi_1(v_0), \ldots$ of Σ_n -formulas in at most the free variable v_0 be given, in such a way that the function $k \mapsto \ulcorner \phi_k(v_0) \urcorner$ is recursive. Let \mathcal{M} be a nonstandard model of PA. Suppose that for each n we have

$$\mathcal{M} \models \exists x (\phi_0(x) \land \dots \land \phi_n(x))$$

Show that there is an element a of \mathcal{M} such that $\mathcal{M} \models \phi_n(a)$ for all $n \in \mathbb{N}$.

Solution: The function $k \mapsto \lceil \phi_k(v_0) \rceil$ is recursive, so representable in PA by a formula F(x, y). We have:

(1) $\mathrm{PA} \vdash F(\overline{k}, \overline{\ulcorner \phi_k(v_0) \urcorner})$

(2)
$$PA \vdash \exists ! yF(\overline{k}, y)$$

for all k. Also,

(3)
$$\operatorname{PA} \vdash \forall s(\operatorname{Tr}_n(\ulcorner\phi_k(v_0)\urcorner, s) \leftrightarrow \phi_k(s))$$

since ϕ_k is assumed to be a Σ_n -formula. Therefore,

(4)
$$\operatorname{PA} \vdash \forall x(\phi_k(x) \leftrightarrow \exists u(F(k, u) \land \operatorname{Tr}_n(u, x)))$$

Moreover we know that

(5)
$$\operatorname{PA} \vdash \forall x (x < \overline{m+1} \leftrightarrow x = \overline{0} \lor \cdots \lor x = \overline{m})$$

and therefore we can conclude that

(6) in PA, the formula $\phi_0(x) \wedge \cdots \phi_m(x)$ is equivalent to the formula

$$\forall v < \overline{m+1} \exists u (F(v,u) \wedge \operatorname{Tr}_n(u,x))$$

By the assumption that $\mathcal{M} \models \exists x(\phi_0(x) \land \cdots \land \phi_m(x))$ for every natural number m, we have

(7)
$$\mathcal{M} \models \exists x \forall v < \overline{m+1} \exists u (F(v,u) \land \operatorname{Tr}_n(u,x))$$

Applying Overspill, there is a nonstandard element $c \in \mathcal{M}$ such that

(8)
$$\mathcal{M} \exists x \forall v < c \exists u (F(v, u) \land \operatorname{Tr}_n(u, x))$$

Let $a \in \mathcal{M}$ be a witness for (8): $\mathcal{M} \models \forall v < c \exists u(F(v, u) \land \operatorname{Tr}_n(u, a))$. Then for every standard m we have

(9)
$$\mathcal{M} \models \operatorname{Tr}_n(\overline{\phi_m(v_0)}, a)$$

which, by the defining property of the formula Tr_n , means $\mathcal{M} \models \phi_m(a)$. This is what we needed to prove.