Retake Exam Gödel's Incompleteness Theorems

June 25, 2015, 10.00-13.00
With Solutions

THIS EXAM CONSISTS OF 4 PROBLEMS; SEE ALSO BACK SIDE

Advice: first do those problems you can do right away; then, start thinking about the others.
Please write your name, student number and e-mail address clearly on the sheets you hand in
Good luck!
Exercise 1. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ and $g: \mathbb{N} \rightarrow \mathbb{N}$ be the two functions which are uniquely determined by the equation

$$
n=2^{f(n)}(2 g(n)+1)-1
$$

for all $n \in \mathbb{N}$.
Show that the functions f and g are primitive recursive.
Solution: The function $n \mapsto 2^{n}$ is primitive recursive, as well as the relation $x \mid y$. Also, the primitive recursive functions are closed under bounded minimisation. So the function f, which can be defined as

$$
f(n)=\mu z \leq n \cdot 2^{z+1} \quad X(n+1)
$$

is primitive recursive. Then the function g, which can be defined as

$$
g(n)=\mu z \leq n . z f(n)=n+1
$$

is also primitive recursive.

Exercise 2.

a) Let ϕ be an $\mathcal{L}_{\text {PA }}$-sentence which is true in all nonstandard models of PA. Prove that PA $\vdash \phi$.
b) Let \mathcal{M} be a nonstandard model of PA , and let ϕ be an $\mathcal{L}_{\mathrm{PA}}(\mathcal{M})$ sentence (so a sentence with constants from the model \mathcal{M}) which is true in every proper end-extension of \mathcal{M}. Prove that $\mathcal{M} \vDash \phi$.

Solution: This exercise is basically about the concept of elementary extension.
a) We only need to show that $\mathcal{N} \models \phi$, where \mathcal{N} denotes the standard model. For then, we know that every model of PA satisfies ϕ, whence $\mathrm{PA} \vdash \phi$ by the Completeness Theorem for first-order logic.

By considering the $\mathcal{L}_{\mathrm{PA}} \cup\{c\}$-theory $\{\phi \mid \mathcal{N} \vDash \phi\} \cup\{c>\bar{n} \mid n \in \mathbb{N}\}$, which is consistent by the Compactness Theorem, we see that \mathcal{N} has a proper elementary extension, which satisfies ϕ because it is a nonstandard model. By elementariness, $\mathcal{N} \models \phi$, as desired.
b) Here we use the McDowell-Specker Theorem, which says that \mathcal{M} has a proper elementary end-extension. This extension satisfies ϕ by assumption; hence by elementariness, $\mathcal{M} \models \phi$.
Exercise 3. Recall that the notation $\square \phi$ stands for $\exists x \overline{\operatorname{Prf}}(x, \overline{\ulcorner\phi\urcorner})$ and that for \square the following three "derivability conditions" hold:

D1 PA $\vdash \phi$ implies PA $\vdash \square \phi$
$\mathrm{D} 2 \mathrm{PA} \vdash \square(\phi \rightarrow \psi) \rightarrow(\square \phi \rightarrow \square \psi)$
D3 PA $\vdash \square \phi \rightarrow \square \square \phi$
You may use without proof, that conditions D1 and D2 imply $\mathrm{PA} \vdash \square(\phi \wedge \psi) \leftrightarrow \square \phi \wedge \square \psi$.
Let G be the Gödel sentence: PA $\vdash G \leftrightarrow \neg \square G$.
a) Prove that there is a sentence ϕ satisfying

$$
\mathrm{PA} \vdash \phi \leftrightarrow(G \rightarrow \neg \square \phi)
$$

b) For ϕ as in a), prove: if PA $\vdash \phi$ then PA $\vdash$$\perp$.
c) For ϕ as in a), prove: if PA $\vdash \neg \phi$ then PA $\vdash \perp$.

Solution: a) Apply the Diagonalisation Lemma to the formula $G \rightarrow \neg \exists x \overline{\operatorname{Prf}}(x, v)$.
b) Assume $\mathrm{PA} \vdash \phi$. Then $\mathrm{PA} \vdash G \rightarrow \neg \square \phi$ by choice of ϕ, and also $\mathrm{PA} \vdash \square \phi$ by the assumption and D1. Hence, $\mathrm{PA} \vdash \neg G$. By Gödel's Second Incompleteness Theorem, PA $\vdash G \leftrightarrow \neg \square \perp$. So, PA $\vdash \square \perp$.
c) Assume PA $\vdash \neg \phi$. Then PA $\vdash \square \neg \phi$ by D1, and PA $\vdash G \wedge \square \phi$ by choice of ϕ and logic. Combining PA $\vdash \square \phi$ and PA $\vdash$$\neg$ we obtain PA $\vdash$$\perp$; and combining this with $\mathrm{PA} \vdash G$, so again $\mathrm{PA} \vdash \neg \square \perp$ by Gödel's Second, we get $\mathrm{PA} \vdash \perp$.

Exercise 4. For this exercise, I remind you of the partial truth predicates for PA: there is a Σ_{n}-formula $\operatorname{Tr}_{n}(y, s)$ such that for every Σ_{n}-formula $\phi\left(v_{0}\right)$ with at most the variable v_{0} free, we have

$$
\mathrm{PA} \vdash \forall s\left(\operatorname{Tr}_{n}(\overline{\ulcorner\phi\urcorner}, s) \leftrightarrow \phi\left[s / v_{0}\right]\right)
$$

Let a sequence $\phi_{0}\left(v_{0}\right), \phi_{1}\left(v_{0}\right), \ldots$ of Σ_{n}-formulas in at most the free variable v_{0} be given, in such a way that the function $k \mapsto\left\ulcorner\phi_{k}\left(v_{0}\right)\right\urcorner$ is recursive. Let \mathcal{M} be a nonstandard model of PA. Suppose that for each n we have

$$
\mathcal{M} \models \exists x\left(\phi_{0}(x) \wedge \cdots \wedge \phi_{n}(x)\right)
$$

Show that there is an element a of \mathcal{M} such that $\mathcal{M} \models \phi_{n}(a)$ for all $n \in \mathbb{N}$.
Solution: The function $k \mapsto\left\ulcorner\phi_{k}\left(v_{0}\right)\right\urcorner$ is recursive, so representable in PA by a formula $F(x, y)$. We have:
(1) $\mathrm{PA} \vdash F\left(\bar{k}, \overline{\left\ulcorner\phi_{k}\left(v_{0}\right)\right.}\right)$
(2) $\mathrm{PA} \vdash \exists!y F(\bar{k}, y)$
for all k. Also,
(3) $\mathrm{PA} \vdash \forall s\left(\operatorname{Tr}_{n}\left(\overline{\left\ulcorner\phi_{k}\left(v_{0}\right)\right\urcorner}, s\right) \leftrightarrow \phi_{k}(s)\right)$
since ϕ_{k} is assumed to be a Σ_{n}-formula. Therefore,
(4) $\mathrm{PA} \vdash \forall x\left(\phi_{k}(x) \leftrightarrow \exists u\left(F(\bar{k}, u) \wedge \operatorname{Tr}_{n}(u, x)\right)\right)$

Moreover we know that
(5) $\mathrm{PA} \vdash \forall x(x<\overline{m+1} \leftrightarrow x=\overline{0} \vee \cdots \vee x=\bar{m})$
and therefore we can conclude that
(6) in PA, the formula $\phi_{0}(x) \wedge \cdots \phi_{m}(x)$ is equivalent to the formula

$$
\forall v<\overline{m+1} \exists u\left(F(v, u) \wedge \operatorname{Tr}_{n}(u, x)\right)
$$

By the assumption that $\mathcal{M} \models \exists x\left(\phi_{0}(x) \wedge \cdots \wedge \phi_{m}(x)\right)$ for every natural number m, we have
(7) $\mathcal{M} \equiv \exists x \forall v<\overline{m+1} \exists u\left(F(v, u) \wedge \operatorname{Tr}_{n}(u, x)\right)$

Applying Overspill, there is a nonstandard element $c \in \mathcal{M}$ such that
(8) $\mathcal{M} \exists x \forall v<c \exists u\left(F(v, u) \wedge \operatorname{Tr}_{n}(u, x)\right)$

Let $a \in \mathcal{M}$ be a witness for (8): $\mathcal{M} \models \forall v<c \exists u\left(F(v, u) \wedge \operatorname{Tr}_{n}(u, a)\right)$. Then for every standard m we have
(9) $\mathcal{M} \equiv \operatorname{Tr}_{n}\left(\overline{\left\ulcorner\phi_{m}\left(v_{0}\right)\right\urcorner}, a\right)$
which, by the defining property of the formula Tr_{n}, means $\mathcal{M} \models \phi_{m}(a)$. This is what we needed to prove.

