Exam Foundations of Mathematics, february 3, 2021, 11.30-14.30

This exam consists of 5 exercises; see also reverse side.

All exercises have equal weight (10 points); your grade will be your total number of points, divided by 5. If an exercise consists of more than 1 part, it is indicated what each part is worth.

Advice: first solve those exercises you can do straight away; then, start thinking about the others. Good luck!

Exercise 1. In this exercise we consider the power set $\mathcal{P}(\mathbb{N})$ of the set \mathbb{N} of natural numbers; on the set $\mathcal{P}(\mathbb{N})$ we have the operation

$$U, V \mapsto U + V = (U \cup V) - (U \cap V)$$

(see pp. 38–39 of the book).

- a) (5 points) Use Zorn's Lemma to prove that there is a subset \mathcal{A} of $\mathcal{P}(\mathbb{N})$ which is maximal w.r.t. the following properties:
 - i) for all $U, V \in \mathcal{A}$ we have $U + V \in \mathcal{A}$.
 - ii) $\mathbb{N} \not\in \mathcal{A}$.
- b) (2 points) Let \mathcal{A} be as in part a). Prove: $\emptyset \in \mathcal{A}$.
- c) (3 points) Let \mathcal{A} be as in part a). Prove: for all $W \in \mathcal{P}(\mathbb{N})$ we have: either $W \in \mathcal{A}$ or $\mathbb{N} - W \in \mathcal{A}$.

Exercise 2. In this exercise we consider a nonempty, countable well-order L which has no greatest element.

- a) (4 points) Prove: there is an injective, strictly increasing function $n \mapsto b_n : \mathbb{N} \to L$ (in other words, a sequence $b_0 < b_1 < b_2 < \cdots$ in L), such that for every $t \in L$ there exists $n \in \mathbb{N}$ with $t < b_n$.
- b) (3 points) Write $L_{<l}$ for $\{x \in L \mid x < l\}$. Prove: if for each $l \in L$ there exists an injective, increasing function $L_{<l} \to \mathbb{R}$, then there is also such a function from L to \mathbb{R} .
- c) (3 points) Show that the statement in b) is no longer valid if we drop the assumption that L is countable.

Exercise 3. In this exercise we consider the theory of Peano Arithmetic, formulated in the language L_{rings} of rings; see Example 2.5.4 (p. 59) of the book. For every natural number n there is the L_{rings} -term

$$\overline{n} = \underbrace{1 + (1 + (\dots + 1))}_{n}$$

Use the Compactness Theorem in order to show that there exists an L_{rings} structure M with the following properties:

- i) \mathbb{N} is an elementary substructure of M.
- ii) In M there is an element c such that for every prime number p the L_{rings} -sentence $\exists x(x \cdot \overline{p} = c)$ is true in M.

Exercise 4. An *L*-theory is said to be *model complete* if for every pair M, N of models of T the following holds: if M is a substructure of N then M is an elementary substructure of N. We consider the following property of an *L*-theory T:

(*) For every *L*-formula $\phi(\vec{u})$ there is an *L*-formula $\exists x_1 \cdots \exists x_k \psi(\vec{x}, \vec{u})$, with ψ quantifier-free, such that

$$T \models \forall \vec{u}(\phi(\vec{u}) \leftrightarrow \exists \vec{x} \psi(\vec{x}, \vec{u}))$$

a) (4 points) Show: if T has the property (*) then for every L-formula ϕ there also exists an L-formula $\forall x_1 \cdots \forall x_k \chi(\vec{x}, \vec{u})$, with χ quantifier-free, such that

$$T \models \forall \vec{u}(\phi(\vec{u}) \leftrightarrow \forall \vec{x}\chi(\vec{x},\vec{u}))$$

b) (6 points) Show: if T has the property (*) then T is model complete.

Exercise 5. In chapter 1 of the book we defined the notion "the cardinality of set X" (notation: |X|) only in expressions like $|X| \leq |Y|$, with meaning: there is a 1-1 function $X \to Y$. In chapter 4 (p. 111) we define the cardinality of X as the least ordinal number α such that there exists a bijection $X \to \alpha$; let us use the notaion $\kappa(X)$ for this.

a) (5 points) Let $g: X \to \alpha$ be an injective function, with α an ordinal number. Prove: $\kappa(X) \leq \alpha$.

- b) (5 points) Show that the following two statements are equivalent, for sets X and Y:
 - i) There exists a 1-1 function $X \to Y$
 - ii) $\kappa(X) \leq \kappa(Y)$