Exam Model Theory, June 19, 2023, 13:00-16:00

with solutions

Exercise 1 Let L be a language, T" an L-theory. Recall that we write Ty
for the set of all universal consequences of T'.

Prove that for an L-sentence ¢ the following two statements are equiva-
lent:

i) ¢ is a consequence of T.

ii) ¢ is true in every substructure of a model of T'.

Solution. i)=ii): this follows at once from the observation that every
sentence in Ty is true in every substructure of a model of T. Indeed, if
¢ € Ty is the formula Vzy with ¢ quantifier-free, and M is a model of T
with substructure NV, then for all m € M we have M = ¢(m), so N = ().
Since N € M, we thus have for all 7 € N that N = ¢(7i), so N = ¢.

ii)=-1): We claim that every model of Ty is a substructure of a model of 7'
This implies the statement we have to prove, for then if ¢ is true in every
substructure of a model of T', a fortiori ¢ will be true in every model of Ty,
and hence be a consequence of Ty.

In oder to prove the claim, let N be a model of Ty,. A model M of
T which contains N as a substructure, is a model of Diag(N) UT. So
assume this theory is inconsistent. Then by the compactness theorem there
is some quantifier-free L(NN)-sentence 1 (7) which is true in N but such that
T = —)(i). Since the constants 7 do not appear in T, it follows that
T = V@) (Z); and therefore VZ&—)(Z) is an element of Ty. But clearly this
sentence is not true in NV, so this contradicts our assumption.

Exercise 2 In this exercise we consider models of Peano Arithmetic PA.
Given such a model M, an “end extension” of M is a model N such that
M is an initial segment of N (i.e., for m € M and n € N we have: if n <m
then n € M). An extension M C N is “proper” if M # N.

Let M be a countable model of PA. Let L(M) be the language of M,
and let ¢ be a new constant.

a) (3 pts) Construct an L(M)U {c}-theory T such that every model of T
is a proper elementary extension of M.

b) (4 pts) Construct a family of types (over M) such that the following
holds: if N is a model of T" which omits every type in the family, then
N is a proper elementary end extension of M.



c¢) (2 pts) Show that none of the types you constructed in part b) is
isolated.

d) (1 pt) Conclude that there exists a proper elementary end extension
of M.

Solution. a) Let ElDiag(M) denote the elementary diagram of a structure
M. Given a countable model M of PA, consider the L(M) U {c}-theory

T = ElDiag(M)U{—=(c=m)|m e M}

Every model N of T' is an elementary extension of M since it is a model of
ElDiag(M), and it is a proper extension by the axioms on c.

b) We distinguish cases. If M is the standard model of PA, then every model
of T is a proper elementary extension by a) which is also an end extension
because every model of PA contains the standard numbers. So we can take
the empty family of types.

For M nonstandard, let for each nonstandard m € M, 3, be the family
of L(M)-formulas

{x <m}U{=(xz=m'|m <m}

(Note that if m is standard, this family is not finitely satisfiable) and let p,
be any type extending ¥,,. It is left to you to work out that if N is a model
of T" which omits each p,, hence each >,,, then N is a proper elementary
end extension of M.

c¢) Suppose the type p,, is isolated, for some nonstandard m € M; then for
some L(M)-formula ¢(x) we have

(x) TEVYz(é(x) >z <m) and T | Vr(p(z) = —(z =m)

for each m’ < m in M. Applying Compactness to the first statement of (x),
we find that

ElDiag(M) U {=(c=m1,...,~(c=myg)} F Va(¢(z) = x < m)

for some elements my,...,m; € M. Since ¢ does not occur in ElDiag(M)
or Va(¢(z) - x < m) we have

ElDiag(M) E Vz(¢(x) — x < m)



And applying a similar reasoning to the second statement of () we find
ElDiag(M) E Vz(é(x) = —=(z = m’))

for all m’ < m. We conclude that these sentences must hold in M, but this
clearly leads to the conclusion that the formula ¢(z) is inconsistent with
ElDiag(M).

d) By the Omitting Types Theorem, a model which omits all ¥,,, exists.

Exercise 3 Let L be a countable language, x an uncountable cardinal and
M an infinite, k-saturated structure.

a) (3 pts) Show that |M| > k.

b) (4 pts) Show that every definable subset of M is either finite or of
cardinality > k.

¢) (3 pts) Show that if the algebraic closure of ) is infinite, it is not
definable.

Solution a) If |M| < k, then the family of L(M)-formulas
{-(zx=a)|a e M}

is finitely satisfiable since M is infinite, and it contains < k many parameters
from M; so by k-saturation of M it should be realized in M. But that is
plainly impossible.

b) If ¢(x) is a formula such that the set A = ¢(M) is infinite, then we can
apply the same trick as in part a) and consider the family

{¢(x) A =(z=m)|[m e A}

and conclude that it should be realized in M, which again is impossible.

¢) Since the language is countable, there are only countably many algebraic
formulas and therefore also only countably many elements which are alge-
braic over (). In other words, acl(()) is countable and it cannot be definable
by b), since x is uncountable.

Exercise 4 In this exercise we consider a complete theory T which has
infinite models, with respect to which we define Morley rank. Let M be a
model of T. Show that there is a type p € S1(M) which has Morley rank
> 1.



Solution. We consider a type p which extends the family of formulas
o ={-(x=a)|aec M}

For any formula —(x = a) we have the family of formulas ¢, = {z =
b|b # a}. Each formula z = b is consistent and algebraic, and therefore
has Morley rank 0; and since the formulas in ¢, are pairwise consistent and
imply —(z = a), we see that the latter formula has Morley rank > 1.

Now let ¢(x) be any formula in p. Then ¢(x) cannot be algebraic, for if
ai,...,a are the realizers in M of ¢, then since p is finitely satisfiable, we
should have

M = y(o(y) A=y =a1) A--- A=(y = ax))

which contradicts the assumption on ai,...,a;. It follows that ¢(x) has
Morley rank > 1, and therefore MR(p) > 1.



