
Exam Model Theory, June 19, 2023, 13:00–16:00
with solutions

Exercise 1 Let L be a language, T an L-theory. Recall that we write T∀
for the set of all universal consequences of T .

Prove that for an L-sentence φ the following two statements are equiva-
lent:

i) φ is a consequence of T∀.

ii) φ is true in every substructure of a model of T .

Solution. i)⇒ii): this follows at once from the observation that every
sentence in T∀ is true in every substructure of a model of T . Indeed, if
φ ∈ T∀ is the formula ∀~xψ with ψ quantifier-free, and M is a model of T
with substructure N , then for all ~m ∈M we have M |= ψ(~m), so N |= ψ(~m).
Since N ⊆M , we thus have for all ~n ∈ N that N |= ψ(~n), so N |= φ.

ii)⇒i): We claim that every model of T∀ is a substructure of a model of T .
This implies the statement we have to prove, for then if φ is true in every
substructure of a model of T , a fortiori φ will be true in every model of T∀,
and hence be a consequence of T∀.

In oder to prove the claim, let N be a model of T∀. A model M of
T which contains N as a substructure, is a model of Diag(N) ∪ T . So
assume this theory is inconsistent. Then by the compactness theorem there
is some quantifier-free L(N)-sentence ψ(~n) which is true in N but such that
T |= ¬ψ(~n). Since the constants ~n do not appear in T , it follows that
T |= ∀~x¬ψ(~x); and therefore ∀~x¬ψ(~x) is an element of T∀. But clearly this
sentence is not true in N , so this contradicts our assumption.

Exercise 2 In this exercise we consider models of Peano Arithmetic PA.
Given such a model M , an “end extension” of M is a model N such that
M is an initial segment of N (i.e., for m ∈M and n ∈ N we have: if n ≤ m
then n ∈M). An extension M ⊆ N is “proper” if M 6= N .

Let M be a countable model of PA. Let L(M) be the language of M ,
and let c be a new constant.

a) (3 pts) Construct an L(M)∪{c}-theory T such that every model of T
is a proper elementary extension of M .

b) (4 pts) Construct a family of types (over M) such that the following
holds: if N is a model of T which omits every type in the family, then
N is a proper elementary end extension of M .
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c) (2 pts) Show that none of the types you constructed in part b) is
isolated.

d) (1 pt) Conclude that there exists a proper elementary end extension
of M .

Solution. a) Let ElDiag(M) denote the elementary diagram of a structure
M . Given a countable model M of PA, consider the L(M) ∪ {c}-theory

T ≡ ElDiag(M) ∪ {¬(c = m) |m ∈M}

Every model N of T is an elementary extension of M since it is a model of
ElDiag(M), and it is a proper extension by the axioms on c.

b) We distinguish cases. If M is the standard model of PA, then every model
of T is a proper elementary extension by a) which is also an end extension
because every model of PA contains the standard numbers. So we can take
the empty family of types.

For M nonstandard, let for each nonstandard m ∈M , Σm be the family
of L(M)-formulas

{x < m} ∪ {¬(x = m′ |m′ < m}

(Note that if m is standard, this family is not finitely satisfiable) and let pm
be any type extending Σm. It is left to you to work out that if N is a model
of T which omits each pm hence each Σm, then N is a proper elementary
end extension of M .

c) Suppose the type pm is isolated, for some nonstandard m ∈ M ; then for
some L(M)-formula φ(x) we have

(∗) T |= ∀x(φ(x)→ x < m) and T |= ∀x(φ(x)→ ¬(x = m′)

for each m′ < m in M . Applying Compactness to the first statement of (∗),
we find that

ElDiag(M) ∪ {¬(c = m1, . . . ,¬(c = mk)} ` ∀x(φ(x)→ x < m)

for some elements m1, . . . ,mk ∈ M . Since c does not occur in ElDiag(M)
or ∀x(φ(x)→ x < m) we have

ElDiag(M) |= ∀x(φ(x)→ x < m)
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And applying a similar reasoning to the second statement of (∗) we find

ElDiag(M) |= ∀x(φ(x)→ ¬(x = m′))

for all m′ < m. We conclude that these sentences must hold in M , but this
clearly leads to the conclusion that the formula φ(x) is inconsistent with
ElDiag(M).

d) By the Omitting Types Theorem, a model which omits all Σm exists.

Exercise 3 Let L be a countable language, κ an uncountable cardinal and
M an infinite, κ-saturated structure.

a) (3 pts) Show that |M | ≥ κ.

b) (4 pts) Show that every definable subset of M is either finite or of
cardinality ≥ κ.

c) (3 pts) Show that if the algebraic closure of ∅ is infinite, it is not
definable.

Solution a) If |M | < κ, then the family of L(M)-formulas

{¬(x = a) | a ∈M}

is finitely satisfiable since M is infinite, and it contains ≤ κ many parameters
from M ; so by κ-saturation of M it should be realized in M . But that is
plainly impossible.

b) If φ(x) is a formula such that the set A = φ(M) is infinite, then we can
apply the same trick as in part a) and consider the family

{φ(x) ∧ ¬(x = m) |m ∈ A}

and conclude that it should be realized in M , which again is impossible.

c) Since the language is countable, there are only countably many algebraic
formulas and therefore also only countably many elements which are alge-
braic over ∅. In other words, acl(∅) is countable and it cannot be definable
by b), since κ is uncountable.

Exercise 4 In this exercise we consider a complete theory T which has
infinite models, with respect to which we define Morley rank. Let M be a
model of T . Show that there is a type p ∈ S1(M) which has Morley rank
≥ 1.
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Solution. We consider a type p which extends the family of formulas

σ = {¬(x = a) | a ∈M}

For any formula ¬(x = a) we have the family of formulas qa = {x =
b | b 6= a}. Each formula x = b is consistent and algebraic, and therefore
has Morley rank 0; and since the formulas in qa are pairwise consistent and
imply ¬(x = a), we see that the latter formula has Morley rank ≥ 1.

Now let φ(x) be any formula in p. Then φ(x) cannot be algebraic, for if
a1, . . . , ak are the realizers in M of φ, then since p is finitely satisfiable, we
should have

M |= ∃y(φ(y) ∧ ¬(y = a1) ∧ · · · ∧ ¬(y = ak))

which contradicts the assumption on a1, . . . , ak. It follows that φ(x) has
Morley rank ≥ 1, and therefore MR(p) ≥ 1.
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