
Exam Topos Theory
January 21, 2019; 10:00–13:00

With solutions

Exercise 1. Let E be a topos, and j : Ω → Ω a Lawvere-Tierney topology
in E . By Shj(E) we denote the category of j-sheaves.

a) (5) Let X be a j-sheaf, and let X
νX→ X̃ be a partial map classifier in

Shj(E). Show that for any diagram

M

f
��

m // Y

X

in E with m mono, there exists an arrow f̃ : Y → X̃ such that the
square

(∗)

M

f
��

m // Y

f̃
��

X νX
// X̃

commutes.

b) (5) Now suppose the mono m represents a j-closed subobject of Y .
Show that there is a unique f̃ : Y → X̃ making the square (∗) a
pullback.

Solution: a): consider the sheafification functor L and the natural trans-
formation η : id⇒ L. We know that the functor L preserves finite limits; in
particular it preserves monos. Since X is a j-sheaf, the partial map diagram
transposes to a diagram

L(M)

f̄
��

L(m)
// L(Y )

X

which is a partial map L(Y ) ⇀ X in Shj(E). By the property of the partial

map classifier X̃, we have a unique arrow ˜̄f : L(Y )→ X̃ making the diagram

L(M)

f̄
��

L(m)
// L(Y )

˜̄f
��

X νX
// X̃
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a pullback. If we compose this with the naturality square

M

ηM
��

m // Y

ηY
��

L(M)
L(m)

// L(Y )

and define f̃ to be the composite ˜̄fηY , we have our commuting square.

b): here one has to see that the map M
m→ Y is j-closed precisely when

the naturality square is a pullback. This is so because the universal closure
operation corresponding to the Lawvere-Tierney topology j sends a mono
m : M → Y to the pullback of L(m) along ηY . Clearly now, if m is j-closed
then the construction given for part a) yields a pullback square.

For uniqueness, suppose the square (∗) is a pullback. Since X
νX→ X̃ is a

diagram of sheaves, (∗) transposes to a diagram

L(M)

f̄
��

L(m)
// L(Y )

¯̃
f
��

X νX
// X̃

which, modulo the isomorphisms X ' L(X) and X̃ ' L(X̃), is just the

L-image of the diagram (∗), and hence a pullback; we see that
¯̃
f represents

the partial map f̄ in Shj(E), and is therefore uniquely determined by m and
f̄ . Hence its transpose f̃ is uniquely determined by m and f .

Exercise 2. Again, E is a topos and j is a Lawvere-Tierney topology in E .
Let Sepj(E) be the full subcategory of E on the j-separated objects, and let
M : E → Sepj(E) be left adjoint to the inclusion functor Sepj(E)→ E .

a) (4) Prove that if X is j-separated then so is XY , for any Y .

b) (4) Prove that the functor M preserves finite products.

c) (2) Does M preserve equalizers in general? Motivate your answer.

Solution: a): the simplest was to remark that we know this for sheaves: ifX
is a sheaf then XY is a sheaf. Now if X is j-separated, X is a subobject of a
sheaf, say we have a mono m : X → Z with Z a sheaf. Then mY : XY → ZY

is a monomorphism (since the functor (−)Y , being a right adjoint, preserves
monos) of XY into the sheaf ZY ; so XY is separated.
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Alternatively, suppose M ′
m→M is j-dense and M ′

f→ XY is a map. By
the exponential adjunction, there is a natural bijection between commutative
triangles

M ′

f
��

m //M

g}}{{
{{
{{
{{

XY

and

M ′ × Y m×id
//

f̃
��

M × Y

g̃
xxrrr

rrr
rrr

rr

X

and, by stability of the closure operation, the map m × id is dense if m is.
Since X is separated, there is at most one g̃ making the right hand triangle
commute. So there is at most one g making the left hand triangle commute;
that is, XY is separated.

b): this is similar to the proof for L in the lecture notes. For the binary
case one proves, for arbitrary separated objects X, that there is a natural
bijective correspondence Sepj(MY ×MZ,X) ' Sepj(M(Y × Z), X), and
applies the Yoneda lemma. It is trivial that M(1) ' 1.

c): you got full points if you remarked that if M preserved equalizers then
M would preserve all finite limits, and therefore would define a subtopos of
E . Not every category of separated objects is itself a topos. For a simple
example, take the poset 2, the linear order with 2 elements, and consider the
¬¬-topology on Set2. Note that objects of this category are arrows in Set;
the category of ¬¬-separated objects is the full subcategory on the injective
functions. This is not a topos.

Exercise 3. Let P be the poset of finite 01-sequences ordered by extension:
σ ≤ τ if and only if σ is an initial segment of τ . We consider the toposes
Set/P (the slice topos, where P is regarded as just a set) and P̂ , the category
of presheaves on the poset P .

Show that there exist both a surjection and an embedding from Set/P
to P̂ .

Solution: consider P as a category and let Pdis be the discrete category on
the objects of P . It is an easy observation that Set/P is equivalent to P̂dis.

We know from the lectures that a functor F : C → D induces a geometric
morphism F̂ : Ĉ → D̂ which is a surjection if F is surjective on objects, and
an embedding if F is full and faithful.

So it suffices to find functors F,G : Pdis → P such that F is surjective
on objects and G is full and faithful. Note that any map from P to itself
gives a functor Pdis → P .

For F we can take the identity function; this is surjective on objects
(this induces the geometric morphism that most of you found). For G, we
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need a function from P to P such that different elements p and q are sent to
incomparable elements G(p), G(q). Now P is a countably infinite set; choose
an enumeration (en)n∈N of P . Define G such that G(en) is the sequence
0 · · · 0︸ ︷︷ ︸
n

1. Then G is a full and faithful functor, and induces an embedding

Set/P ' P̂dis → P̂ .

Exercise 4. Recall that in a topos E an object X is internally projective
if the functor (−)X preserves epimorphisms; E is said to satisfy the internal
axiom of choice (IC) if every object of E is internally projective.

Show that the following two assertions are equivalent:

i) E satisfies IC and 1 is projective in E .

ii) Every object of E is projective.

Solution: i)⇒ii) is most elegantly proven by observing that the functor
E(X,−) is isomorphic to E(1, (−)X), which is the composition of (−)X :
E → E and E(1,−) : E → Set. The first of these preserves epis because
X is internally projective, and the second one does because 1 is projective.
Hence E(X,−) preserves epis; that is, X is projective.
ii)⇒i): Let f : A → B be epi. Then f is split epi by ii), and split epis
are preserved by any functor, in particular by the functor (−)X . So X is
internally projective.
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