Perhaps the intermediate value theorem and perhaps more

Wim Veldman

IMAPP, Faculty of Science, Radboud University Nijmegen

Let \mathcal{F} be the class of all continuous function f from [0,1] to \mathbb{R} such that f(0) = 0 and f(1) = 1. Let \mathcal{I}_0 be the subclass of \mathcal{F} consisting of all functions f that assume the value $\frac{1}{2}$, that is, there (constructively) exists x in [0,1] such that $f(x) = \frac{1}{2}$.

Constructive mathematicians sometimes are asked to give an example showing that the intermediate value theorem fails, that is, to provide an element of \mathcal{F} that one can not prove to belong to \mathcal{I}_0 . Very often, the example they offer has the following property:

There exists x in [0,1] such that, if f(x) is apart from $\frac{1}{2}$, then f assumes the value $\frac{1}{2}$.

If f has this property, we want to say that f perhaps assumes the value $\frac{1}{2}$ and we denote the class of all such elements of \mathcal{F} by \mathcal{I}_1 , calling it the first perhapsive extension of the class \mathcal{I}_0 .

We also want to say: f perhaps perhaps assumes the value $\frac{1}{2}$ if and only if

there exists x in [0,1] such that, if f(x) is apart from $\frac{1}{2}$, then f perhaps assumes the value $\frac{1}{2}$.

The class of all such functions is called \mathcal{I}_2 , the *second perhapsive extension* of the class \mathcal{I}_0 . \mathcal{I}_1 turns out to be a proper subclass of \mathcal{I}_2 : there are functions that perhaps perhaps assume the value $\frac{1}{2}$ while we are unable to prove that they perhaps assume the value $\frac{1}{2}$.

We will explain how to continue this process, even into the transfinite, and prove that every perhapsive extension of \mathcal{I}_0 is a proper subclass of all later ones.

If time permits, we show that the phenomenon of *perhapsity* occurs in other contexts too. There are *perhaps-finite* sets of natural numbers, *perhaps-rational* real numbers, and *perhaps-countable* subsets of Baire space \mathcal{N} , and in all these contexts it makes sense to iterate perhaps.