2024
73. Temporal criticality in socio-technical systems,
José Moran, Frank P. Pijpers, Utz Weitzel, Jean-Philippe Bouchaud, Debabrata Panja;
in review.
72. Metabolic heterogeneity allows non-equilibrium behavior and supersaturation in the competition for two resources,
Inès Daras, Franjo Weissing, Debabrata Panja, G. Sander van Doorn;
in review.
71. Timeliness criticality in complex systems,
José Moran, Matthijs Romeinders, Frank P. Pijpers, Utz Weitzel, Debabrata Panja, Jean-Philippe Bouchaud;
Nature Physics 20, 1352-1358 (2024) (associated News and Views).
70. Structural dynamics of a model of amorphous silicon,
Zihua Liu, Debabrata Panja, Gerard T. Barkema;
Physica A 650, 129978 (2024) .
2023
69. Domain growth in polycrystalline graphene,
Zihua Liu, Debabrata Panja, Gerard T. Barkema;
Nanomaterials 13, 3127 (2023) [13 pages].
68. Temporal origin of nestedness in interaction networks,
Phillip P. A. Staniczenko, Debabrata Panja;
PNAS Nexus 2, pgad412 (2023) [9 pages].
67. Reducing societal impacts of SARS-CoV-2 interventions through subnational implementation,
Mark M. Dekker, Luc E. Coffeng, Frank P. Pijpers, Debabrata Panja, Sake J. de Vlas;
eLife 12, e80819 (2023) [28 pages].
2022
66. Influence maximization under limited network information: Seeding high-degree neighbors,
Jiamin Ou, Vincent Buskens, Arnout van de Rijt, Debabrata Panja;
Journal of Physics: Complexity 3, 045004 (2022) [21 pages].
65. The hidden dependence of spreading vulnerability on topological complexity,
Mark M. Dekker, Jiamin Ou, Raoul D. Schramm and Debabrata Panja;
Phys. Rev. E 105, 054301 (2022) [13 pages].
64. Scalability and composability of flow accumulation algorithms based on asynchronous many-tasks,
Kor de Jong, Debabrata Panja, Derek Karssenberg, Marc van Kreveld;
Comp. Geosci. 162, 105083 (2022) [12 pages].
63. Structural dynamics of polycrystalline graphene,
Zihua Liu, Debabrata Panja, Gerard T. Barkema;
Phys. Rev. E 105, 044116 (2022) [7 pages].
62. Quantifying agent impacts on contact sequences in social interactions,
Mark M. Dekker, Tessa F. Blanken, Fabian Dablander, Jiamin Ou, Denny Borsboom, Debabrata Panja;
Sci. Rep. 12, 3483 (2022) [12 pages].
2021
61. One-parametric bifurcation analysis of data-driven car-following models,
Paul Petersik, Debabrata Panja and Henk A. Dijkstra;
Physica D: Nonlinear Phenomena 427, 133016 (2021) [13 pages].
60. Characterizing neural phase-space trajectories via Principal Louvain Clustering,
Mark M. Dekker, Arthur S. C. França, Debabrata Panja and Michael X Cohen;
J. Neurosci. Methods 362, 109313 (2021) [10 pages].
59. An environmental modelling framework based on asynchronous many-tasks: scalability and usability,
Kor de Jong, Debabrata Panja, Marc van Kreveld and Derek Karssenberg;
Environmental Modelling and Software 139, 104998 (2021) [15 pages].
58. A next step in disruption management: combining operations research and complexity science,
Mark M. Dekker et al.;
Public Transport 14, 5-26
(2021) [22 pages].
57. Cascading dominates large-scale disruptions in transport over complex networks,
Mark M. Dekker and Debabrata Panja
PLOS ONE 16, e0246077 (2021) [17 pages].
56. Het modelleren van infectieziekten vanuit het perspectief van statistische fysica,
Debabrata Panja and Mark M. Dekker;
Nederlandse Tijdschrift voor Natuurkunde 87, 18-22 (2021).
2020
55. Super slowing down in the bond-diluted Ising model
Wei Zhong, Debabrata Panja and Gerard T. Barkema;
Phys. Rev. E 102, 022132 (2020) [8 pages].
2019
54. Approximate dynamical eigenmodes of the Ising model with local spin-exchange moves,
Wei Zhong, Debabrata Panja and Gerard T. Barkema;
Phys. Rev. E 100, 012132 (2019) [8 pages].
53. Predicting transitions across macroscopic states for railway systems,
Mark M. Dekker, Debabrata Panja, Henk A. Dijkstra and Stefan C. Dekker;
PLOS ONE 14, e0217710 (2019) [26 pages].
52. A reduced phase-space approach to analyse railway dynamics,
Mark M. Dekker and Debabrata Panja;
IFAC-PapersOnLine 52, 1-6 (2019) [6 pages].
2018
51. Critical dynamical exponent of the two-dimensional scalar φ4 model with local moves,
Wei Zhong, Debabrata Panja and Gerard T
. Barkema;
Phys. Rev. E 98, 062128 (2018) [6 pages].
50. Generalised Langevin equation formulation for anomalous diffusion in the Ising model at the critical temperature,
Wei Zhong, Debabrata Panja and Gerard T. Barkema;
Phys. Rev. E 98, 012124 (2018) [10 pages].
2016
49. Dynamics of a double-stranded DNA segment in a shear flow,
Debabrata Panja, Gerard T. Barkema and J. M. J. van Leeuwen;
Phys. Rev. E 93, 042501 (2016) [10 pages].
2015
48. Efficient simulation of semiflexible polymers,
Debabrata Panja, Gerard T. Barkema and J. M. J. van Leeuwen;
Phys. Rev. E 92, 032603 (2015) [14 pages].
47. Complex interactions with the surroundings dictate a tagged chain's dynamics in unentangled polymer melts,
Debabrata Panja, Gerard T. Barkema and Robin C. Ball;
Macromolecules 48, 1442-1453 (2015).
2014
46. Semiflexible polymer dynamics with a bead-spring model,
Gerard T. Barkema, Debabrata Panja and J. M. J. van Leeuwen;
J. Stat. Mech. (2014) P11008.
45. NMR observations of entangled polymer dynamics: Focus on tagged chain rotational dynamics
and confirmation from a simulation model,
F. Furtado, J. Damron, M.-L. Trutschel, C. Franz,
K. Schröter, R. C. Ball, K. Saalwächter and D. Panja;
Macromolecules 47, 256-268 (2014).
2013
44. Through the eye of the needle: Recent advances in understanding biopolymer translocation,
Debabrata Panja, Gerard T. Barkema and Anatoly B. Kolomeisky;
Topical Review, J. Phys.: Condens. Matter 25, 413101 (2013).
43. Dynamical eigenmodes of a polymerized membrane,
Rick Keesman, Gerard T. Barkema and Debabrata Panja;
J. Stat. Mech. (JSTAT) (2013) P04009.
42. Role of osmotic and hydrostatic pressures in bacteriophage genome ejection,
Serge G. Lemay, Debabrata Panja and Ian J. Molineux;
Phys. Rev. E 87, 022714 (2013).
41. Dynamical eigenmodes of star and tadpole polymers,
Rick Keesman, Gerard T. Barkema and Debabrata Panja;
J. Stat. Mech. (JSTAT) (2013) P02021.
40. Popping the cork: Mechanisms of phage genome ejection,
Ian J. Molineux and Debabrata Panja;
Invited article, Nature Reviews Microbiology 11, 194-204 (2013).
2011
39. Structural modes of a polymer in the repton model,
Gerard T. Barkema, Debabrata Panja and J. M. J. van Leeuwen;
J. Chem. Phys. 134, 154901 (2011) [8 pages].
38. DNA translocation through nanopores with salt gradients: The role of osmotic flow,
Marius M. Hatlo, Debabrata Panja and René van Roij;
Phys. Rev. Lett. 107, 068101 (2011) [5 pages]; supplementary online material [3 pages].
37. Probabilistic phase space trajectory description for anomalous polymer dynamics,
Debabrata Panja;
J. Phys.: Condens. Matter 23, 105103 (2011) [7 pages].
2010
36. Dynamics of bacteriophage genome ejection in vitro and in vivo,
Debabrata Panja and Ian J. Molineux;
Invited article, Phys. Biol. 7, 045006 (2010) [15 pages].
35. Unwinding dynamics of double-stranded polymers,
Marco Baiesi, Enrico Carlon, Gerard T. Barkema and Debabrata Panja;
J. Chem. Phys. 133, 154907 (2010) [4 pages].
34. Anomalous polymer dynamics is non-Markovian: Memory effects and the generalized Langevin equation formulation,
Debabrata Panja;
J. Stat. Mech. (JSTAT) (2010) P06011 [34 pages].
33. Generalized Langevin equation formulation for anomalous polymer dynamics,
Debabrata Panja;
J. Stat. Mech. (JSTAT) (2010) L02001 [8 pages].
32. Simulations of two-dimensional unbiased polymer translocation using the bond fluctuation model,
Debabrata Panja and Gerard T. Barkema;
J. Chem
. Phys. 132, 014902 (2010) [10 pages].
Selected for the January 15, 2010 issue of the Virtual Journal of Biological Physics Research.
2009
31. Rouse modes of self-avoiding flexible polymers,
Debabrata Panja and Gerard T. Barkema
J. Chem. Phys. 131, 154903 (2009) [7 pages].
30. Amplitude and frequency spectrum of a translocating RNA molecule,
Henk Vocks, Debabrata Panja and Gerard T. Barkema;
J. Phys.: Condens. Matter 21, 375105 (2009) [7 pages].
29. Non-equilibrium dynamics of single polymer adsorption to solid surfaces,
Debabrata Panja, Gerard T. Barkema, Anatoly B. Kolomeisky;
J. Phys.: Condens. Matter 21, 242101 (2009) [Fast Track Communication, 6 pages].
Chosen as an IOP Select paper.
28. Response of single polymers to localized step strains,
Debabrata Panja;
Phys. Rev. E 79, 011803 (2009) [10 pages].
Selected for the February 1, 2009 issue of the Virtual Journal of Biological Physics Research.
2008
27. Pore-blockade times for field-driven polymer translocation,
Henk Vocks, Debabrata Panja, Gerard T. Barkema and Robin C. Ball;
J. Phys.: Condens. Matter 20, 095224 (2008) [7 pages].
Chosen as an IOP Select paper for 2008.
26. Polymer translocation out of planar confinements,
Debabrata Panja, Gerard T. Barkema and Robin C. Ball;
J. Phys.: Condens. Matter 20, 075101 (2008) [9 pages].
Chosen as an IOP Select paper for 2008.
25. Passage times for polymer translocation pulled through a narrow pore,
Debabrata Panja and Gerard T. Barkema;
Biophys. J. 94, 1630-1637 (2008).
Selected for "New and Notable" commentary in Biophys. J.
2007
24. Extreme associated functions: Optimally linking local extremes to large-scale atmospheric circulation structures,
Debabrata Panja and Frank M. Selten;
Atmos. Chem. Phys. Discuss. 7, 14433-14460 (2007).
23. Anomalous dynamics of unbiased polymer translocation through a narrow pore,
Debabrata Panja, Gerard T. Barkema and Robin C. Ball;
J. Phys.: Condens. Mattter 19, 432202 (2007) [Fast Track Communication, 8 pages].
2006
22. Effects of anomalous dynamics on unbiased polymer translocation,
Debabrata Panja, Gerard T. Barkema and Robin C. Ball [9 pages].
21.
Predictability of El Niño as a nonlinear stochastic limit cycle,
Debabrata Panja and Gerrit Burgers.
20. Elasticity from force network ensembles in granular media,
Srdjan Ostojic and Debabrata Panja;
Phys. Rev. Lett. 97, 208001 (2006) [4 pages].
19. Passage times for unbiased polymer translocation through a narrow pore,
Joanne Klein-Wolterink, Gerard T. Barkema and Debabrata Panja;
Phys. Rev. Lett. 96, 208301 (2006) [4 pages].
Selected for the June 1, 2006 issue of the Virtual Journal of Biological Physics Research.
18. Systematic density expansion of the Lyapunov exponents for a two-dimensional random Lorentz gas,
H. V. Kruis, Debabrata Panja and Henk van Beijeren;
J. Stat. Phys. 124, 823-842 (2006).
2005
17. Response of a hexagonal granular packing under a localized overload: Effects of pressure,
Srdjan Ostojic and Debabrata Panja;
Proceedings Powders and Grains 2005, pages 81-85,
Eds. R. Garcia-Rojo, H. J. Herrmann and S. McNamara;
Publisher A. A. Balkema; ISBN 041538348X.
16. Response of a hexagonal granular packing under a localized external force: Exact solutions,
Srdjan Ostojic and Debabrata Panja;
J.
Stat. Mech., Theor. Expt. (JSTAT) P01011 (2005) [34 pages].
15. Response of a hexagonal granular packing under a localized external force,
Srdjan Ostojic and Debabrata Panja;
Europhys. Lett. 71, 70 (2005) [7 pages].
2004
14. Fluctuating fronts as correlated extreme value problems: An example of Gaussian statistics,
Debabrata Panja;
Phys. Rev. E 70, 036101 (2004) [6 pages].
13. Clustering in a one-dimensional inelastic lattice gas,
Srdjan Ostojic, Debabrata Panja and Bernard Nienhuis;
Phys. Rev. E 69, 041301 (2004) [7 pages].
12. Effects of fluctuations on propagating fronts (review article),
Debabrata Panja;
Phys. Rep. 393, 87-174 (2004).
2003
11. Asymptotic scaling of the diffusion coefficient of fluctuating ``pulled'' fronts,
Debabrata Panja;
Phys. Rev. E 68, 065202(R) (2003) [Rapid Comm., 4 pages].
10. Front propagation and diffusion in the A ↔ A + A hard-core reaction on a chain,
Debabrata Panja, Goutam Tripathy, Wim van Saarloos;
Phys. Rev. E 67, 046206 (2003) [5 pages].
9. Surprising aspects of fluctuating ``pulled'' fronts,
Debabrata Panja;
Proceedings for 3rd International Conference Unsolved Problems of Noise (UPoN) and fluctuations in physics, biology and high technology 2002;
AIP Conference Proceedings 665, 539-550 (2003).
2002
8. Fronts with a growth cutoff but speed higher than the linear spreading speed,
Debabrata Panja, Wim van Saarloos;
Phys. Rev. E 66, 015206(R) (2002) [Rapid Comm., 4 pages].
7. Pairing of Lyapunov exponents for a hard-sphere gas under shear in the thermodynamic limit (long version),
Debabrata Panja, Ramses van Zon;
Phys. Rev. E 66, 021101 (2002) [12 pages].
6. Lyapunov exponent pairing for a thermostatted hard-sphere gas under shear in the thermodynamic limit (short version),
Debabrata Panja, Ramses van Zon;
Phys. Rev. E 65, 060102(R) (2002) [Rapid Comm., 4 pages].
5. The weakly pushed nature of ``pulled'' fronts with a cutoff,
Debabrata Panja, Wim van Saarloos;
Phys. Rev. E 65, 057202 (2002) [4 pages].
4. Fluctuating ``pulled'' fronts: the origin and the effects of a finite particle cutoff,
Debabrata Panja, Wim van Saarloos;
Phys. Rev. E 66, 036206 (2002) [24 pages].
3. An Elementary proof of Lyapunov exponent pairing for hard-sphere systems at constant kinetic energy,
Debabrata Panja;
J. Stat. Phys. 109, 705-727 (2002).
2001
2. Field-dependent collision frequency of the two-dimensional driven random Lorentz gas,
Christoph Dellago, Henk van Beijeren, Debabrata Panja, J. R. Dorfman;
Phys. Rev. E 64, 036217 (2001) [3 pages].
2000
1. Long-time-tail effects on Lyapunov exponents of a random, two-dimensional field-driven Lorentz gas,
D. Panja, J. R. Dorfman, Henk van Beijeren;
J. Stat. Phys 100, 279-311 (2000).