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1 Campana points on curves

These lecture notes mainly follow Chapter 2 of notes by Abramovich [1], which in turn is largely
based upon the work of Campana [2].
Let k be a numberfield and denote by O := Ok,S the ring of integers away from S for some finite
set of primes S. Throughout the document, a variety over k will mean a smooth proper integral
scheme of finite type over k. A curve will mean a variety of dimension 1.

Definition 1. A Campana pair is a pair (Y/∆), where Y is a curve and ∆ is a Q-divisor on Y of

the form
∑
y

(1− 1

my
) · y for some my ∈ Z>0 with my = 1 for almost all y.

An especially important case of this will be the following.

Definition 2. Let f : X → Y be a dominant morphism of varieties over k where dim(Y ) = 1. For

p ∈ Y a closed point let my = min
i

mi, where f∗(y) =
∑
mi ̸=0

mi · Ci as divisors on X. Define the

divisor ∆f on Y by setting ∆f :=
∑
y

δy · y with δy = 1− 1

my
.

The sum is indeed finite, which follows from [4, Tag 0574] Lemma 37.26.7. If Y is a model of Y

that is proper over O and ∆ =
∑
y

δy · y is a divisor on Y with δy = 1− 1

my
, we will also write ∆

for the divisor
∑
y

δy · y on Y, where y is the Zariski closure of y in Y.

Definition 3. A point y ∈ Y (k) is called a soft integral point on (Y/∆) if for any nonzero prime
p ⊂ O and any integral point z ∈ ∆ such that yp = zp in Yp := Y ×O Spec(Fp), we have
multp(y ∩ z) ≥ mz. Denote the set of soft integral points by (Y/∆)(O).

When ∆ = 0, we simply recover the rational points of Y . When ∆ ≥ ∆′ we have the inclusion
(Y/∆)(O) ⊂ (Y/∆′)(O). The multiplicity can be calculated as follows in the case that (y)p = (z)p.
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Remark 4. Let Y be such a model and assume that YOp := Y ×O Spec(Op) is a regular scheme.
The multiplicity multp(y∩z) equals by definition the integer rp such that y∩z = Spec(O/I) where
I = prp ·J where J and p are coprime ideals. Write R = O/I, then note that rp = length(R⊗OOp).
By an abuse of notation we will write z and y for the Op points on YOp . Since YOp is regular, we
may find an affine open Spec(A) = U ⊂ Y containing zp (and hence containing z) such that the
divisor z is cut out by a single regular function g ∈ A. Note that since zp = yp we have that y ∈ U .
Then length(R ⊗O Op) = length(Op/Ip) equals the length of the global sections of the following
fibre product:

T Op

Op A

z∗

y∗

The map z∗ being reduction modulo g ∈ A, we obtain that T = Op/(y
∗(g)) = Op/(g(y)). Hence

we see that multp(y ∩ z) = νp(f(y)) for f a local equation of z in YOp .

It is a classical result that there always exists a regular model Y of Y over O and in general a
model Y becomes regular when base-changed to OS for S large enough. Now we can ‘compute’ the
Campana points in an example.

Example 5. Consider Y = P1
k and ∆ =

4

5
· [0] + 2

3
· [1] + 2

3
· [∞]. Then

X1

X0
,
X1 −X0

X0
and

X0

X1

are rational functions on P1
O that cut out [0], [1], [∞] locally in P1

Op
for all p. By the above remark

(PO/∆)(O) then consists of the set of [x : y] ∈ P1(O), where x, y ∈ O and for all p of O we have:


νp(

x

y
) > 0 =⇒ νp(

x

y
) ≥ 5

νp(
x− y

y
) > 0 =⇒ νp(

x− y

y
) ≥ 3

νp(
y

x
) > 0 =⇒ νp(

y

x
) ≥ 3

Remark 6. Although in the above example we were able to find one local equation for each of the
relevant divisors, this need not always be the case. Even in the case Y = P1

O with O = Ok and

k = Q(
√
−5), the O-point [1 :

√
−5− 1√
−5 + 1

] does not admit f ∈ k(
x0
x1

)× that cuts it out locally in P1
Op

for all p.

The following proposition links the previous two definitions.

Proposition 7. Let f : X → Y be a dominant morphism of smooth proper varieties over k with
dim(Y ) = 1 and assume that there are regular models X and Y and a morphism f̃ : X → Y
extending f . Then for any x ∈ X(k), f(x) is a soft integral point on (Y,∆f ).

Proof. Let x ∈ X(k) such that f̃(x) =: y has that yp = zp for some z ∈ ∆f and some nonzero
p ⊂ O. Since Y is regular, so is YOp , so by the above remark we have that multp(y∩z) = νp(y

∗(g))

for g ∈ K(Y)× a local equation for z in YOp . Since y∗ = x∗ ◦ f̃∗, this equals νp(x
∗(f̃∗(g))). The

element f̃∗(g) ∈ K(X)× satisfies νCi(f̃
∗(g)) = mi for Ci a prime divisor on X. This implies that

for Ci the Zariski closure of Ci in YOp we have νCi(f̃
∗(g)) = mi (since OX ,Ci = OX,Ci and the

valuations that they induce on K(X)× are the same). This implies that the divisor f̃∗([z]) is of the
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form
∑
i

mi · Ci +mp · XFp . If mp > 0, then f̃∗(XFp) = zp and hence f̃ is not surjective. But f̃ is

dominant and proper, hence closed, so this can not be the case. Since f̃∗([z]) =
∑
i

mi · Ci, we have

that locally on U around xp, f̃
∗([z]) is given by div(

∏
i

tmi
i ) for ti a local coordinate for Ci at xp

and hence up to an invertible function on U we have f̃∗(g) =
∏
i

tmi
i . Now since by assumption

f̃∗(g)(xp) = g(zp) = 0, we obtain that f̃∗(g)(x) vanishes modulo p. But then since f̃∗(g) =
∏
i

tmi
i

it vanishes with multiplicity at least mz at x. By Remark 4, we conclude that multp(y ∩ z) ≥ mz

and hence we conclude that f(x) is a soft integral point on (Y/∆)(O).

Such an extended morphism exists over OS for S large enough.

2 Orbifold Mordell conjecture

We begin by defining the Kodaira dimension of a Campana pair (Y/∆).

Definition 8. The Canonical divisor of (Y/∆) is KY/∆ = KY +∆. The Kodaira dimension of a
Campana pair (Y/∆) is the Itaka dimension of the Q divisor KY/∆. It is denoted κ(Y/∆). We say
that (Y/∆) if of general type if KY +∆ is big.

For a curve this is relatively easily understood.

Remark 9. Let Y be a curve, then KY + ∆ is big if and only if it is ample (because a rational
map from a smooth curve to a projective variety extends uniquely). On a curve, a divisor D is
very ample if and only if h0(Y,D − [x] − [y]) = h0(Y,D) − 2 for any closed points y, x, so by
Riemann-Roch, D is ample if and only if its degree is positive. So we have the following cases:


κ(Y/∆) = −∞ when deg(∆ +KY ) < 0

κ(Y/∆) = 0 when deg(∆ +KY ) = 0

κ(Y/∆) = 1 when deg(∆ +KY ) > 0

We can now define morphisms between Campana pair.

Definition 10. A morphism of curves g : Y → Y ′ is called a morphism of Campana pairs
g : (Y/∆) → (Y ′/∆′) if KY/∆ ≥ g∗(KY ′/∆′) (for a suitable choice of canonical divisors on Y, Y ′).

Remark 11. This may seem like an odd definition. However if we look more closely we note that
this is equivalent to asking that for all y′ ∈ Y ′ and any y ∈ g−1(y) we have that ny′ ≤ my · ny,

where my is the ramification at y, ∆ =
∑
y

(1− 1

my
) · y and ∆′ =

∑
y′

(1− 1

my′
) · y′.

We have already encountered certain special cases of these.
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Example 12. Let g : Y → Y ′ be a morphism of curves, then for ∆ = 0 and ∆′ = ∆g, g is
a morphism (Y/∆) → (Y ′/∆g). Indeed, the ‘canonical divisor version’ of the Riemann Hurwicz

theorem gives that g∗(K ′
C) + R is a canonical divisor on C for R :=

∑
p∈C′

∑
q∈g−1(p)

(mq − 1) · q the

ramification divisor. It follows immediately that R ≥ g∗(∆g) and hence we get the result.

We have the following proposition.

Proposition 13. Let f : (Y/∆) → (C ′/∆′) be a morphism of Campana pairs and assume that f
extends to a morphism f̃ : Y → Y ′, where Y,Y ′ are regular O-models. Then g maps soft integral
points as follows: g((Y/∆)(O)) ⊂ (Y ′/∆′)(O).

Proof. The proof is more or less the same as the one given for Proposition 7. One picks a point
y ∈ YOp(Op) such that for all z ∈ ∆ with zp = yp, a local equation g for z has νp(g(x)) ≥ mz.
Assume that y′ := g(y) has y′

p = z′p for some z′ ⊂ ∆′. The proof of Proposition 7 gives us that

for g′ a local equation for z′ that f̃∗(g′) =
∏
i

tmi
i for ti local equations for points in the fiber of z′.

Then g′(y′) =
∏
i

tmi
i (y) and since at least one of the ti vanishes at y, it does so with multiplicity

ni = npi for pi the point at which ti is a uniformizer. This yields νp(g
′(y′)) ≥ mi · npi ≥ mz by

Remark 11.

The main point of this part is to state the following conjecture.

Conjecture 14 (Orbifold Mordell conjecture). Let (Y/∆) be a Campana pair of general type.
Then (Y/∆)(O) is finite.

Note that we are still using the notation O = Ok,S above for S arbitrary. The Campana mordell
conjecture is true when Y itself is of general type by Faltings theorem.

Remark 15. The finiteness above does not depend on the choice of model. If Y is an OS model such
that (YOS′/∆)(OS′) is finite for all S′ containing S and Y ′ is another O-model, then Y ′ and Y are
isomorphic over OS′ for S′ large enough from which follows that (YOS′/∆)(OS′) = (Y ′

OS′/∆)(OS′).

The following Corollary related to the Bombieri-Lang conjecture follows from Orbifold Mordell.

Corollary 16. Assume that Conjecture 14 is true. Let X be a smooth projective variety over a
numberfield with a dominant morphism f : X → P1

k with deg(∆f ) > 2. Then X(k) does not lie
Zariski dense in X.

Proof. We have the equality X(k) =
⊔

y∈f(X(k))

Xy(k), where Xy is the fibre over y. Pick a finite

set S such that X admits a regular model over O := Ok,S and such that f is defined over O. The
hypothesis deg(∆f ) > 2 implies that (P1

O/∆)(O) is finite by Conjecture 14. By Proposition 7 we

obtain that f(X(k)) ⊂ (P1
O/∆)(O) and thus f(X(k)) is finite. Hence X(k) =

⊔
y∈f(X(k))

Xy(k) where

the disjoint union is finite and hence X(k) does not lie dense in X.
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We make the following definition for convenience.

Definition 17. For Y a curve, a divisor ∆ =
∑
y

(1− 1

my
) ·y on Y is said to be of form (m1, ...,mn)

if Supp(∆) consists of n points yi, with myi = mi.

One can do certain reductions to show that Conjecture 14 holds if it holds in only some cases.

Lemma 18. To prove Conjecture 14 it suffices to do so for Y = P1
k and ∆ of one of the following

types:
(2, 2, 2, 2, 2) or (2, 2, 2, 3) or (3, 3, 4) or (2, 4, 5) or (2, 3, 7)

Proof. As remarked, we do not have to consider the case g(Y ) ≥ 2. If g(Y ) = 1, we may assume

that ∆ =
1

2
· p. then Y has a 2 to 1 cover f : Y → P1, ramified over 4 points p1, p2, p3, p4 and we

may assume that p1 = p. Denote by qi their images in P1. Then note that for ∆′ =
3

4
p1 +

4∑
i=2

1

2
pi,

f is a morphism (Y/∆) → (P1/∆′). The morphism is defined over Ok,S for S large enough and
hence by Proposition 13, the case g(Y ) = 1 reduces to the case Y = P1 and ∆ = (2, 2, 2, 4).
In the case that Y = P1 it is a simple computation to reduce to these cases, using the fact that
(P1

O/∆)(O) ⊂ (P1
O,∆

′) whenever ∆ ≥ ∆′.

We end with the statement that the Orbifold-Mordell conjecture is implied by the abc-conjecture.

Conjecture 19 (abc-conjecture). Consider triples (a, b, c) ∈ Z3 such that c = a+b and gcd(a, b, c) = 1.
For all ϵ > 0 there is a constant Cϵ > 0 such that any triple as above satisfies:

max{|a|, |b|, |c|} < Cϵ · Rad(abc)1+ϵ

Indeed we have the following Theorem.

Proposition 20. Assume that Conjecture 19 is true. Then so is Conjecture 14.

The general case follows from the methods developed by Elkies [3] as claimed in [1] p.37. We
give the proof in the case that k = Q and the support of ∆ is 3 points over k.

In this case we may assume that the points are 0, 1,∞ and defined my multiplicities m0,m1,m∞
at 0, 1,∞ respectively (otherwise use a transformation in PGL2(Q)). We have to show that there
exist only finitely many [a : c] with a, c ∈ Z coprime such that for b := a− c the following hold:

p|a =⇒ pm0 |a
p|b =⇒ pm1 |b
p|c =⇒ pm∞ |c

(1)

For x ∈ {a, b, c} this implies that |x|1/mi ≥ Rad(x) for the i ∈ {0, 1,∞} corresponding to a, b
or c. Set M := max{|a|, |b|, |c|}, then we get M1/m0+1/m1+1/m∞ ≥ Rad(abc). That (P1/∆) is of
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general type is equivalent to 1/m0+1/m1+1/m∞ < 1. Pick any 0 < ϵ < 1−(1/m0+1/m1+1/m∞).
Since 0 < ϵ < 1, it follows from Conjecture 19 that there is a constant C > 0 such that all coprime
(a, b, c) with c = a + b satisfy M1−ϵ < C · Rad(abc). Hence for our a, b, c satisfying (1) this gives
that M1−(1/m0+1/m1+1/m∞+ϵ) < C. In particular the absolute value of a and c is bounded giving
that there are only finitely many options.
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