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The Geometry of Numbers is an important branch of number theory

initiated by Hermann Minkowski at the end of the 19th century. This

minicourse is based on [OLD00], [CF67], [FT93, §IV.2]

We consider the vector space Rn with a fixed basis e1, . . . , en. We

write x for a vector in Rn and (x1, . . . , xn) for its coordinates with respect

to the fixed basis, so that x =
∑n

i=1 xiei . We write 0 for the origin of Rn,

i.e., the vector with all coordinates equal to 0. The induced Euclidean

norm is ‖x‖ =
√
x2

1 + · · ·+ x2
n . The induced Lebesgue measure satisfies

vol([0, 1]n) =
∫

0≤xi≤1,1≤i≤n dx1 · · · dxn = 1.

1. Lattices

The standard lattice in Rn is the set of vectors with integer coordi-

nates

Λs = {x ∈ Rn : x1, . . . , xn ∈ Z} ⊆ Rn.
For us a lattice Λ in Rn is the image of a group homomorphism

Zn → Rn such that Λ spans Rn.

Remark 1.1. For every lattice Λ ⊆ Rn there is a unique linear transfor-

mation ϕ : Rn → Rn such that Λ = ϕ(Λs).

Exercise 1.2. Show that the linear map ϕ in Remark 1.1 is an isomor-

phism.
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The fundamental parallelepiped of the lattice Λ is

F (Λ) =

n∑
i=1

[0, 1)ϕ(ei).

The determinant of the lattice Λ is

det(Λ) = |det(ϕ(ei))1≤i≤n| ,

i.e., the determinant of the matrix whose columns are the coordinates

of the vectors ϕ(e1), . . . , ϕ(en).

Exercise 1.3. Show that a subset Λ ⊆ Rn is a lattice if and only if Λ is

a subgroup of Rn that spans Rn and there is a real number ε > 0 such

that

Λ ∩ {x ∈ Rn : ‖x‖ ≤ ε} = {0}.

2. Guiding questions of geometry of numbers

Given a lattice Λ in Rn we can ask the following questions.

Question 1: which subsets of Rn contain points of Λ?

Question 2: how many points of Λ lie in a given subset of Rn?

These are the guiding questions of geometry of numbers. We will

start by addressing the first one as follows.

Exercise 2.1. Show that every closed disk of radius at least 1 in R2

contains at least on point of Λs .

Exercise 2.2. Show that every square of sidelength at least 2 in R2

contains at least a point of Λs .

The exercises here above show that sufficiently large disks and squares

always contain lattice points, however small disks and squares don’t need

to contain any lattice points. Find some examples.

Are the bounds in the exercises here above sharp?

Up to translation we can always assume that our set contains a lattice

point, for example 0. Hence, it makes sense to ask whether a subset of

Rn containing 0 contains any other point of Λ.

It is easy to show that every square S in R2 centered at 0 and with

sidelength smaller than 2 satisfies S ∩Λs = {0}. Similarly, every disk D

in R2 centered at 0 and with radius smaller than 1 satisfies D∩Λs = {0}.
From these examples, we see that the answer to Question 1 depends

on the size of the subsets.
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3. Minkowski’s Fundamental Theorem

A set S ⊆ Rn is said to be

• bounded if there exists a real number B > 0 such that ‖x‖ ≤ B
for all x ∈ S;

• convex if for all x and y in S the segment between x and y is

wholly contained in S;

• centrally symmetric if −x ∈ S for all x ∈ S.

Here, the segment between two vectors x and y in Rn is the set

{λx + (1− λ)y : 0 ≤ λ ≤ 1}.

For a bounded convex set S ⊆ Rn, the indicator function

1S : Rn → Rn, x 7→

{
1 if x ∈ S,
0 if x /∈ S,

is Riemann integrable [FT93, Exercise IV.10]. We define the volume of

S as vol(S) =
∫
Rn 1S.

Exercise 3.1. Show that if S ⊆ Rn is convex and centrally symmetric,

then 0 ∈ S.

Exercise 3.2. Let S ⊆ Rn be a convex set that contains three non-

collinear points A, B, C. Show that S contains the triangle with vertices

A, B, C.

Exercise 3.3. Show that a closed set S ⊆ R2 with nonempty interior

is convex if and only if for every point P on the boundary of S there

exists a line L through P such that the whole of S lies on one side of

L. Here, the boundary of S is the difference between the closure and

the interior of S.

Exercise 3.4. Show that the intersection of two convex sets is convex.

Theorem 3.5 (Minkowski’s Fundamental Theorem, 1889). Let S ⊆ Rn
be a bounded, convex set that is centrally symmetric and such that

vol(S) > 2n. Then there exists a point x ∈ S ∩ Λs such that x 6= 0.

Remark 3.6. For an arbitrary lattice Λ ⊆ Rn, the same conclusion holds

provided we replace the assumption vol(S) > 2n by vol(S) > 2n det(Λ).

Exercise 3.7. Show that the assumptions on the convexity of S and on

the volume are necessary.

Proof of Theorem 3.5. Let Q = [−1, 1]n be the cube of volume 2n

centered at 0. Then Rn =
⋃
u∈2Λs

(Q + u) is the union of translates

of Q by vectors with even integer coordinates. Since S is bounded,
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there is a finite subset U ⊆ 2Λs such that S ⊆
⋃
u∈U(Q + u). For

every u ∈ U, let Su = ((Q + u) ∩ S) − u. Then Su ⊆ Q for every

u ∈ U. Since vol(S) > 2n and vol(Q) = 2n, there must be distinct

points u, v ∈ U such that Su and Sv overlap. Let x ∈ Su ∩ Sv . Then

there are distinct points y , z ∈ S such that x = y − u = z − v .

Since S in centrally symmetric, we have −z ∈ S. Since S is convex

(y − z)/2 ∈ S. Since (y − z)/2 = (u − v)/2 and u, v ∈ 2Λs , we

conclude that (y − z)/2 ∈ Λs ∩ S. Finally, (y − z)/2 6= 0, as y and z

are distinct. �

Exercise 3.8. Deduce Remark 3.6 from Theorem 3.5 and a suitable

linear transformation.

Remark 3.9. If in addition S is a closed subset, the conclusion of The-

orem 3.5 holds also if vol(S) = 2n. Indeed, since S is closed, the small-

est distance of any point of Λs r S from S is a positive real number δ.

Hence, we can enlarge S by δ/2 in every direction, to obtain a bounded,

convex, centrally symmetric set S′ with volume vol(S′) > vol(S) and

S′ ∩ Λs = S ∩ Λs .

The proof presented here is based on Blichfeldt’s approach in [OLD00,

Problem 5.3.3]. Minkowski’s original proof can be found in [OLD00,

§5.3]. Additional reading: Blichfeldt’s theorems in [OLD00, §9] or in

[FT93, §IV.2].

4. Applications of Minkowski’s Fundamental Theorem

Exercise 4.1 (Simultaneous Diophantine Approximation [OLD00, §6.6]).

Let α1, . . . , αn be irrational real numbers. Show that there exist infin-

itely many sets of integers p1, . . . , pn, p with p ≥ 1 such that∣∣∣∣pip − αi
∣∣∣∣ ≤ 1

p1+ 1
n

for all i ∈ {1, . . . , n}, by applying Minkowski’s Fundamental Theorem

to

Sε = {x ∈ Rn+1 : |xi − αixn+1| ≤ ε ∀i ∈ {1, . . . , n}, |xn+1| ≤ ε−n}

for any ε ∈ (0, 1).

Exercise 4.2. (Lagrange’s Four Squares Theorem [OLD00, §8.6])

An integer x is said to be a sum of four squares if there are x1, x2, x3, x4 ∈
Z such that x = x2

1 + x2
2 + x2

3 + x2
4 .

Step 1: Show that if two integers x and y are both sums of four squares

then the product xy is a sum of four squares.
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Step 2: Show that if x is a prime number then there are y , z ∈ Z such

that x | y 2 + z2 + 1. If x > 2 consider the sets

S1 = {y 2 mod x : 0 ≤ y ≤ (x − 1)/2},
S2 = {−z2 − 1 mod x : 0 ≤ z ≤ (x − 1)/2},

and show that S1 ∩ S2 6= ∅ by computing their cardinalities.

Let ϕ : R4 → R4 given by the matrix
x 0 y z

0 x z −y
0 0 1 0

0 0 0 1

 .
Let Λ = ϕ(Λs). Let

S = {x ∈ R4 : x2
1 + x2

2 + x2
3 + x2

4 < 2x}.

Step 3: Show that x | x2
1 + x2

2 + x2
3 + x2

4 for all x ∈ Λ.

Step 4: Apply Minkowski’s Fundamental Theorem to S for the lattice

Λ.

Step 5: Combine Steps 1 – 4 to show that every positive integer x is a

sum of four squares.

5. Number of lattice points in squares and disks

In this section we address Question 2 in two specific examples.

5.1. Squares. Let S(L) = [−L, L]2 be the square in R2 centered at 0

and with sidelength 2L. Let N(S(L)) be the cardinality of S(L)∩Λs . We

want to estimate the size of N(S(L)). One approach consists in drawing

for each point P ∈ S(L)∩Λs the fundamental parallelepiped with vertex

P , that is, F (Λs)+P . Since the area of F (Λs) is 1, the number N(S(L))

is equal to the area of the region ∪P∈S(L)∩Λs (F (Λs) + P ). We observe

that this region is contained in the square S(L + 1) and contains the

square S(L − 1). Hence, its area is bounded above by vol(S(L + 1))

and below by vol(S(L− 1)). Thus

vol(S(L− 1)) ≤ N(S(L)) ≤ vol(S(L+ 1))

(2(L− 1))2 ≤ N(S(L)) ≤ (2(L+ 1))2

2L2 − 8L+ 4 ≤ N(S(L)) ≤ 4L2 + 8L+ 4.

Dividing both sides by 4L2 and taking the limit we observe that

lim
L→∞

N(S(L))

4L2
= 1.

Thus N(S(L)), as a function of L, grows asymptotically like 4L2. Since

4L2 − 8L− 4 ≤ 4L2 − 8L+ 4 ≤ N(S(L)) ≤ 4L2 + 8L+ 4,
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we can estimate the difference as follows

|N(S(L))− 4L2| ≤ 8L+ 4.

Notation 5.1. Given two functions f , g : R>0 → R we write

f = O(g)

if there is a real number C > 0 such that |f (x)| ≤ Cg(x) for all x ∈ R>0.

With the notation just introduced, we have

N(S(L)) = 4L2 +O(L).

5.2. Disks. Let D(r) be the disk in R2 centered at the origin and with

radius r . Let N(D(r)) be the cardinality of D(r) ∩ Λs . We want to

estimate the size of N(D(r)). As in the previous example, we can draw

a fundamental parallelepiped with vertes P for every P ∈ D(r) ∩ Λs .

The union of such parallelepipeds is contained in the disk D(r +
√

2)

and contains the disk D(r −
√

2). Thus

vol(D(r −
√

2)) ≤ N(D(r)) ≤ vol(D(r +
√

2))

π(r −
√

2)2 ≤ N(D(r)) ≤ π(r +
√

2)2,

and as in the previous example, we conclude that

lim
r→∞

N(D(r))

πr 2
= 1

and

N(D(r)) = πr 2 +O(r).

An analogous argument is presented in [OLD00, §4.1].

5.3. Two equivalent norms. The disk

D(r) = {(x, y) ∈ R2 :
√
x2 + y 2 ≤ r}

is a closed ball for the Euclidean topology, i.e., the topology induced by

the Euclidean norm ‖(x, y)‖ =
√
x2 + y 2.

The square

S(L) = {(x, y) ∈ R2 : |x |, |y | ≤ L}
is a closed ball for the topology induced by the sup norm ‖(x, y)‖∞ =

max{|x |, |y |}.
These two norms are equivalent, in the sense that ‖ · ‖∞ = O(‖ · ‖)

and ‖ · ‖ = O(‖ · ‖∞), as you can show with the following exercise.

Exercise 5.2. Show that for all (x, y) ∈ R2 the following inequalities

holds:

max{|x |, |y |} ≤
√
x2 + y 2,√

x2 + y 2 ≤
√

2 max{|x |, |y |}.
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6. Number of lattice points in more general shapes

Minkowski’s Fundamental Theorem shows the existence of lattice

points in convex centrally symmetric sets of sufficiently large volume.

How many lattice points are there in these sets? The examples of

the squares and disks suggest that the number of points has a precise

dependence on the volume of the region. This is in fact true also for

convex centrally symmetric sets and more general sets.

Exercise 6.1. Let S ⊆ Rn be a bounded, convex, centrally symmetric

set. Show that

LS = {x ∈ Rn :
1

L
x ∈ S}

is bounded, convex and centrally symmetric for all L > 0.

Recall that the indicator function 1S of a bounded convex set is

Riemann integrable.

Theorem 6.2. Let S ⊆ Rn be a bounded set such that 1S is Riemann
integrable. Let N(LS) be the cardinality of LS ∩ Λs . Then

lim
L→∞

N(LS)

Ln
= vol(S).

Proof. Since S is bounded there is B > 0 such that S ⊆ [−B,B]n.

Then

N(LS)

Ln
=
∑
x∈Λs

1LS(x) =
∑
x∈ 1

L
Λs

1S(x) =
∑

x∈ 1
L

Λs∩[−B,B]n

1S(x)

is a Riemann sum for the function 1S on the cube [−B,B]n by translates

of
[
0, 1

L

]n
. Since 1S is Riemann integrable,

lim
L→∞

N(LS)

Ln
=

∫
[−B,B]n

1S = vol(S). �

Exercise 6.3. Let S ⊆ Rn be a bounded set such that 1S is Riemann

integrable. Let Λ be a lattice in Rn. Let N(LS) be the cardinality of

LS ∩ Λ. Show that

lim
L→∞

N(LS)

Ln
=

vol(S)

det(Λ)
.

6.1. Another proof of Minkowski’s Fundamental Theorem. We ap-

ply Theorem 6.2 to give a different proof of Minkowski’s Fundamental

Theorem.

Proof. (Second proof of Theorem 3.5) Let S ⊆ Rn be a bounded,

convex, centrally symmetric set such that vol(S) > 2n. For L > 0, let
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N(L) be the cardinality of L
2
S ∩ Λs . By Theorem 6.2 we have

lim
L→∞

N(L)

Ln
= vol

(
1

2
S

)
=

vol(S)

2n
> 1.

By definition of limit, there exists L0 > 0 such that for L ≥ L0 N(L) >

Ln. Since Ln is the cardinality of (Z/LZ)n, for L ≥ L0 there are at least

two distinct points x, y in L
2
S ∩ Λs that have the same residue modulo

L (or equivalently the coordinates of x and y have the same rest after

division by L). In particular, (x − y)/L ∈ Λs . But (x − y)/2L ∈ 1
2
S, as

1
2
S is convex and centrally symmetric. Thus (x − y)/L ∈ Λs ∩ S, and

(x − y)/L 6= 0 as x and y are distinct. �

7. Number of lattice points in some unbounded nonconvex sets

A typical nonconvex lattice point counting problem is estimating the

cardinality N(LS) of LS ∩ Λs , where

S = {(x, y) ∈ R2 : x, y > 0, xy ≤ 1}.
Here, the set S is not bounded (and has infinite volume), but Λs ∩ LS
is finite for all L > 0. Hence, Λs ∩ LS must be contained in a bounded

subset SL of LS. We observe that 1 ≤ x, y ≤ L for all (x, y) ∈
Λs ∩ LS. Let SL = LS ∩ [1, L]2. Then SL is bounded and 1SL is

Riemann integrable, however we cannot directly apply Theorem 6.2.

Exercise 7.1. Use the strategy of Section 5 to show that N(LS) grows

asymptotically like vol(SL) as a function of L.

Exercise 7.2. Let

S = {(x, y) ∈ R2 : x, y > 0, x2y ≤ 1}.
Show that N(LS) = L3 +O(L3/2).
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